首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Fuel》2007,86(12-13):1772-1780
In this study, wasted cooking oil from restaurants was used to produce neat (pure) biodiesel through transesterification, and this converted biodiesel was then used to prepare biodiesel/diesel blends. The goal of this study was to compare the trace formation from the exhaust tail gas of a diesel engine when operated using the different fuel type: neat biodiesel, biodiesel/diesel blends, and normal diesel fuels. B20 produced the lowest CO concentration for all engine speeds. B50 produced higher CO2 than other fuels for all engine speeds, except at 2000 rpm where B20 gave the highest. The biodiesel and biodiesel/diesel blend fuels produced higher NOx for various engine speeds as expected. SO2 formation not only showed an increasing trend with increased engine speed but also showed an increasing trend as the percentage of diesel increased in the fuels. Among the collected data, the PM concentrations from B100 engines were higher than from other fuelled engines for the tested engine speed and most biodiesel-contained fuels produced higher PM than the pure diesel fuel did. Overall, we may conclude that B20 and B50 are the optimum fuel blends. The species of trace formation in the biodiesel-contained fuelled engine exhaust were mainly CnH2n+2, DEP, and DPS. For the B100, B80, B50, and D fuelled engines, C15H32 was the dominant species for all engine speeds, while squalene (C30H50) was the dominant for B20. DEP was only observed in the B100, B80, and B50 fuelled engines in this study. The D fuelled engine showed a higher DPS production for engine speeds higher than 1200 rpm.  相似文献   

2.
O?uzhan Do?an 《Fuel》2011,90(7):2467-9430
Nitrogen oxides and smoke emissions are the most significant emissions for the diesel engines. Especially, fuels containing high-level oxygen content can have potential to reduce smoke emissions significantly. The aim of the present study is to evaluate the influence of n-butanol/diesel fuel blends (as an oxygenation additive for the diesel fuel) on engine performance and exhaust emissions in a small diesel engine. For this aim five-test fuels, B5 (contains 5% n-butanol and 95% diesel fuel in volume basis), B10, B15, B20 and neat diesel fuel, were prepared to test in a diesel engine. Tests were performed in a single cylinder, four stroke, unmodified, and naturally aspirated DI high speed diesel engine at constant engine speed (2600 rpm) and four different engine loads by using five-test fuels. The experimental test results showed that smoke opacity, nitrogen oxides, and carbon monoxide emissions reduced while hydrocarbon emissions increased with the increasing n-butanol content in the fuel blends. In addition, there is an increase in the brake specific fuel consumption and in the brake thermal efficiency with increasing n-butanol content in fuel blends. Also, exhaust gas temperature decreased with increasing n-butanol content in the fuel blends.  相似文献   

3.
As global petroleum demand continues to increase, alternative fuel vehicles are becoming the focus of increasing attention. Biodiesel has emerged as an attractive alternative fuel option due to its domestic availability from renewable sources, its relative physical and chemical similarities to conventional diesel fuel, and its miscibility with conventional diesel. Biodiesel combustion in modern diesel engines does, however, generally result in higher fuel consumption and nitrogen oxide (NOx) emissions compared to diesel combustion due to fuel property differences including calorific value and oxygen content. The purpose of this study is to determine the optimal engine decision-making for 100% soy-based biodiesel to accommodate fuel property differences via modulation of air-fuel ratio (AFR), exhaust gas recirculation (EGR) fraction, fuel rail pressure, and start of main fuel injection pulse at over 150 different random combinations, each at four very different operating locations. Applying the nominal diesel settings to biodiesel combustion resulted in increases in NOx at three of the four locations (up to 44%) and fuel consumption (11-20%) over the nominal diesel levels accompanied by substantial reductions in particulate matter (over 80%). The biodiesel optimal settings were defined as the parameter settings that produced comparable or lower NOx, particulate matter (PM), and peak rate of change of in-cylinder pressure (peak dP/dt, a metric for noise) with respect to nominal diesel levels, while minimizing brake specific fuel consumption (BSFC). At most of the operating locations, the optimal engine decision-making was clearly shifted to lower AFRs and higher EGR fractions in order to reduce the observed increases in NOx at the nominal settings, and to more advanced timings in order to mitigate the observed increases in fuel consumption at the nominal settings. These optimal parameter combinations for biodiesel were able to reduce NOx and noise levels below nominal diesel levels while largely maintaining the substantial PM reductions. These parameter combinations, however, had little (maximum 4% reduction) or no net impact on reducing the biodiesel fuel consumption penalty.  相似文献   

4.
P.K. Sahoo  M.K.G. Babu  S.N. Naik 《Fuel》2007,86(3):448-454
Non-edible filtered high viscous (72 cSt at 40 °C) and high acid value (44 mg KOH/gm) polanga (Calophyllum inophyllum L.) oil based mono esters (biodiesel) produced by triple stage transesterification process and blended with high speed diesel (HSD) were tested for their use as a substitute fuel of diesel in a single cylinder diesel engine. HSD and polanga oil methyl ester (POME) fuel blends (20%, 40%, 60%, 80%, and 100%) were used for conducting the short-term engine performance tests at varying loads (0%, 20%, 40%, 60%, 80%, and 100%). Tests were carried out over entire range of engine operation at varying conditions of speed and load. The brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) were calculated from the recorded data. The engine performance parameters such as fuel consumption, thermal efficiency, exhaust gas temperature and exhaust emissions (CO, CO2, HC, NOx, and O2) were recorded. The optimum engine operating condition based on lower brake specific fuel consumption and higher brake thermal efficiency was observed at 100% load for neat biodiesel. From emission point of view the neat POME was found to be the best fuel as it showed lesser exhaust emission as compared to HSD.  相似文献   

5.
S. Bajpai 《Fuel》2009,88(4):705-711
Karanja (Pongamia pinnata) oil, a non-edible high viscosity (27.84 cSt at 40 °C) straight vegetable oil, was blended with conventional diesel in various proportions to evaluate the performance and emission characteristics of a single cylinder direct injection constant speed diesel engine. Diesel and karanja oil fuel blends (5%, 10%, 15%, and 20%) were used to conduct short-term engine performance and emission tests at varying loads (0%, 20%, 40%, 60%, 80%, and 100%). Tests were carried out over the entire range of engine operation and engine performance parameters such as fuel consumption, thermal efficiency, exhaust gas temperature, and exhaust emissions (smoke, CO, CO2, HC, NOx, and O2) were recorded. The brake specific energy consumption (BSEC), brake thermal efficiency (BTE), and exhaust emissions were evaluated to determine the optimum fuel blend. Higher BSEC was observed at full load for neat petro-diesel. A fuel blend of 10% karanja oil (KVO10) showed higher BTE at a 60% load. Similarly, the overall emission characteristics were found to be best for the case of KVO10 over the entire range of engine operation.  相似文献   

6.
Safflower seed oil was chemically treated by the transesterification reaction in methyl alcohol environment with sodium hydroxide (NaOH) to produce biodiesel. The produced biodiesel was blended with diesel fuel by 5% (B5), 20% (B20) and 50% (B50) volumetrically. Some of important physical and chemical fuel properties of blend fuels, pure biodiesel and diesel fuel were determined. Performance and emission tests were carried out on a single cylinder diesel engine to compare biodiesel blends with petroleum diesel fuel. Average performance reductions were found as 2.2%, 6.3% and 11.2% for B5, B20 and B50 fuels, respectively, in comparison to diesel fuel. These reductions are low and can be compensated by a slight increase in brake specific fuel consumption (Bsfc). For blends, Bsfcs were increased by 2.8%, 3.9% and 7.8% as average for B5, B20 and B50, respectively. Considerable reductions were recorded in PM and smoke emissions with the use of biodiesel. CO emissions also decreased for biodiesel blends while NOx and HC emissions increased. But the increases in HC emissions can be neglected as they have very low amounts for all test fuels. It can be concluded that the use of safflower oil biodiesel has beneficial effects both in terms of emission reductions and alternative petroleum diesel fuel.  相似文献   

7.
《Fuel》2005,84(12-13):1543-1549
A blend of 20% (v/v) ethanol/methyl soyate was prepared and added to diesel fuel as an oxygenated additive at volume percent levels of 15 and 20% (denoted as BE15 and BE20). We also prepared a blend containing 20% methyl soyate in diesel fuel (denoted as B20). The fuel blends that did not have any other additive were stable for up to 3 months. Engine performance and emission characteristics of the three different fuels in a diesel engine were investigated and compared with the base diesel fuel. Observations showed that particulate matter (PM) emission decreased with increasing oxygenate content in the fuels but nitrogen oxides (NOx) emissions increased. The diesel engine fueled by BE20 emitted significantly less PM and a lower Bosch smoke number but the highest NOx among the fuel blends tested. All the oxygenate fuels produced moderately lower CO emissions relative to diesel fuel. The B20 blend emitted less total hydrocarbon (THC) emissions compared with base diesel fuel. This was opposite to the fuel blends containing ethanol (BE15, BE20), which produced much higher THC emission.  相似文献   

8.
H. Raheman  S.V. Ghadge 《Fuel》2007,86(16):2568-2573
The performance of biodiesel obtained from mahua oil and its blend with high speed diesel in a Ricardo E6 engine has been presented in this paper together with some of its fuel properties. These properties were found to be comparable to diesel and confirming to both the American and European standards. Engine performance (brake specific fuel consumption, brake thermal efficiency and exhaust gas temperature) and emissions (CO, smoke density and NOx) were measured to evaluate and compute the behaviour of the diesel engine running on biodiesel. The reductions in exhaust emissions and brake specific fuel consumption together with increase brake power, brake thermal efficiency made the blend of biodiesel (B20) a suitable alternative fuel for diesel and thus could help in controlling air pollution.  相似文献   

9.
Hu Chen  Jianxin Wang  Shijin Shuai  Wenmiao Chen 《Fuel》2008,87(15-16):3462-3468
Vegetable methyl ester was added in ethanol–diesel fuel to prevent separation of ethanol from diesel in this study. The ethanol blend proportion can be increased to 30% in volume by adding the vegetable methyl ester. Engine performance and emissions characteristics of the fuel blends were investigated on a diesel engine and compared with those of diesel fuel. Experimental results show that the torque of the engine is decreased by 6%–7% for every 10% (by volume) ethanol added to the diesel fuel without modification on the engine. Brake specific fuel consumption (BSFC) increases with the addition of oxygen from ethanol but equivalent brake specific fuel consumption (EBSFC) of oxygenated fuels is at the same level of that of diesel. Smoke and particulate matter (PM) emissions decrease significantly with the increase of oxygen content in the fuel. However, PM reduction is less significant than smoke reduction. In addition, PM components are affected by the oxygenated fuel. When blended fuels are used, nitrogen oxides (NOx) emissions are almost the same as or slightly higher than the NOx emissions when diesel fuel is used. Hydrocarbon (HC) is apparently decreased when the engine was fueled with ethanol–ester–diesel blends. Fuelling the engine with oxygenated diesel fuels showed increased carbon monoxide (CO) emissions at low and medium loads, but reduced CO emissions at high and full loads, when compared to pure diesel fuel.  相似文献   

10.
Tie Li  Masaru Suzuki  Hideyuki Ogawa 《Fuel》2009,88(10):2017-354
The effects of ethyl tert-butyl ether (ETBE) addition to diesel fuel on the characteristics of combustion and exhaust emissions of a common rail direct injection diesel engine with high rates of cooled exhaust gas recirculation (EGR) were investigated. Test fuels were prepared by blending 0, 10, 20, 30 and 40 vol% ETBE to a commercial diesel fuel. Increasing ETBE fraction in the fuel helps to suppress the smoke emission increasing with EGR, but a too high fraction of ETBE leads to misfiring at higher EGR rates. While the combustion noise and NOx emissions increase with increases in ETBE fraction at relatively low EGR rates, they can be suppressed to low levels by increasing EGR. Though there are no significant increases in THC and CO emissions due to ETBE addition to diesel fuel in a wide range of EGR rates, the ETBE blended fuel results in higher aldehyde emissions than the pure diesel fuel at relatively low EGR rates. With the 30% ETBE blended fuel, the operating load range of smokeless, ultra-low NOx (<0.5 g/kWi h), and efficient diesel combustion with high rates of cooled EGR is extended to higher loads than with the pure diesel fuel.  相似文献   

11.
In this work, the effects of a standard ultra-low sulphur diesel (ULSD) fuel and a new, ultra-clean synthetic GTL (gas-to-liquid) fuel on the performance, combustion and emissions of a single-cylinder, direct injection, diesel engine were studied under different operating conditions with addition of simulated reformer product gas, referred to as reformed EGR (REGR). For this purpose various levels of REGR of two different compositions were tested. Tests with standard EGR were also carried out for comparison. Experiments were performed at four steady state operating conditions and the brake thermal efficiency, combustion process and engine emission data are presented and discussed. In general, GTL fuel resulted in a higher brake thermal efficiency compared to ULSD but the differences depended on the engine condition and EGR/REGR level and composition. The combustion pattern was significantly modified when the REGR level was increased. Although the extent of the effects of REGR on emissions depended on the engine load, it can be generally concluded that an optimal combination of GTL and REGR significantly improved both NOx and smoke emissions. In some cases, NOx and smoke emission reductions of 75% and 60%, respectively, were achieved compared to operation with ULSD without REGR. This offers a great potential for engine manufacturers to meet the requirements of future emission regulations.  相似文献   

12.
An alternative fuel production was performed by pyrolysis of waste vehicle tires under nitrogen (N2) environment and with calcium hydroxide (Ca(OH)2) as catalyst. The sulfur content of liquids obtained were reduced by using Ca(OH)2. The liquid fuel of waste vehicle tires(TF) was then used in a diesel engine to blend with petroleum diesel fuel by 5%(TF5), 10%(TF10), 15%(TF15), 25%(TF25), 35%(TF35), 50%(TF50), and 75%(TF75) wt. and pure (TF100). Performance characteristics such as engine power, engine torque, brake specific fuel consumption (bsfc) and exhaust temperature and emission parameters such as oxides of nitrogen (NOx), carbon monoxides (CO), total unburned hydrocarbon (HC), sulfur dioxides (SO2) and smoke opacity of the engine operation with TF and blend fuels of TF-diesel were experimentally investigated and compared with those of petroleum diesel fuel. It was concluded that the blends of pyrolysis oil of waste tires TF5, TF10, TF25 and TF35 can efficiently be used in diesel engines without any engine modifications. However, the blends of TF50, TF75 and TF100 resulted considerably to high CO, HC, SO2 and smoke emissions.  相似文献   

13.
Waste anchovy fish oils transesterification was studied with the purpose of achieving the conditions for biodiesel usage in a single cylinder, direct injection compression ignition. With this purpose, the pure biodiesel produced from anchovy fish oil, biodiesel-diesel fuel blends of 25%:75% biodiesel-diesel (B25), 50%:50% biodiesel-diesel (B50), 75%:25% biodiesel-diesel (B75) and petroleum diesel fuels were used in the engine to specify how the engine performance and exhaust emission parameters changed. The fuel properties of test fuels were analyzed. Tests were performed at full load engine operation with variable speeds of 1000, 1500, 2000 and 2500 rpm engine speeds. As results of investigations on comparison of fuels with each other, there has been a decrease with 4.14% in fish oil methyl ester (FOME) and its blends' engine torque, averagely 5.16% reduction in engine power, while 4.96% increase in specific fuel consumption have been observed. On one hand there has been average reduction as 4.576%, 21.3%, 33.42% in CO2, CO, HC, respectively; on the other hand, there has been increase as 9.63%, 29.37% and 7.54% in O2, NOx and exhaust gas temperature has been observed. It was also found that biodiesel from anchovy fish oil contains 37.93 wt.% saturated fatty acids which helps to improve cetane number and lower NOx emissions. Besides, for biodiesel and its blends, average smoke opacity was reduces about 16% in comparison to D2. It can be concluded that waste anchovy fish obtained from biodiesel can be used as a substitute for petroleum diesel in diesel engines.  相似文献   

14.
By the method of data collation, research into changes in life histories (ignition delay plus time of combustion) of the compounded fuel droplets (diesel fuel-biodiesel fuel (RME)-bioethanol), as well as diesel engine D-144 brake specific fuel consumption rates was performed and obtained results being compared to diesel fuel by an analogous manner.An optimum composition of the multi-component blend B30 + 7.5E demonstrating specific fuel consumption rates and droplet combustion characteristics very similar to diesel fuel was derived. In comparison to B30, a newly derived combustible blend demonstrated fairly improved emissions of exhaust gases. For low load mode: smoke opacity (−10%), NOX (−2%), CO (−20%), and HC (−12.5%). For average load mode: smoke opacity (−10%), NOX (−2%), CO (−22%), and HC (−14.5%). For high load mode: smoke opacity (−18%), NOX (−2%), CO (−22%), and HC (−18%).  相似文献   

15.
The effect of fuel constituents and exhaust gas recirculation (EGR) on combustion characteristics, fuel efficiency and emissions of a direct injection diesel engine fueled with diesel-dimethoxymethane (DMM) blends was investigated experimentally. Three diesel-DMM blended fuels containing 20%, 30% and 50% by volume fraction of DMM, corresponding to 8.5%, 12.7% and 21.1% by mass of oxygen in the blends, were used. By the use of DMM, it is observed that CO and smoke emissions as well as the total number and mass concentration of particulate reduce significantly, while HC emissions and particulate number with lower geometric mean diameters (Di < 0.039 μm) increase slightly. For each fuel, there is an increase of ignition delay whereas a decrease of cylinder pressure and heat release rate in the premixed combustion phase when the diesel engine was operated with EGR system. The brake thermal efficiency fluctuates at small EGR ratio, while decreases with the further increase of EGR ratio. With an increase of EGR ratio, NOx emission is reduced at the cost of increased smoke, HC and CO emissions as well as the total number and mass of particulates for each fuel.  相似文献   

16.
Cherng-Yuan Lin  Hsiu-An Lin 《Fuel》2006,85(3):298-305
Biodiesel is an alternative fuel that is cleaner than petrodiesel. Biodiesel can be used directly as fuel for a diesel engine without having to modify the engine system. It has the major advantages of having high biodegradability, excellent lubricity and no sulfur content. In this study, the biodiesel produced by a transesterification technique was further reacted by using a peroxidation process. Four types of diesel fuel, biodiesel with and without an additional peroxidation process, a commercial biodiesel and ASTM No. 2D diesel were compared for their fuel properties, engine performance and emission characteristics. The experimental results show that the fuel consumption rate, brake thermal efficiency, equivalence ratio, and exhaust gas temperature increased while the bsfc, emission indices of CO2, CO and NOx decreased with an increase of engine speed. The three biodiesels showed a higher fuel consumption rate, bsfc, and brake thermal efficiency, while at the same time exhibited lower emission indices of CO and CO2 as well as a lower exhaust gas temperature when compared to ASTM No. 2D diesel. Moreover, the biodiesel produced with the additional peroxidation process was found to have an oxygen content, weight proportion of saturated carbon bonds, fuel consumption rate, and bsfc that were higher than the biodiesel produced without the additional process; while at the same time the brake thermal efficiency, equivalence ratio, and emission indices of CO2, CO and NOx were found to be lower. In particular, biodiesel produced with the addition of the peroxidation process had the lowest equivalence ratio and emission indices of CO2, CO and NOx among all of the four test fuels. Therefore, the peroxidation process can be used to effectively improve the fuel properties and reduce emissions when biodiesel is used.  相似文献   

17.
C.H. Cheng  C.S. Cheung  T.L. Chan  S.C. Lee  C.D. Yao  K.S. Tsang   《Fuel》2008,87(10-11):1870-1879
Biodiesel is an alternative fuel for internal combustion engines. It can reduce carbon monoxide (CO), hydrocarbon (HC) and particulate matter (PM) emissions, compared with diesel fuel, but there is also an increase in nitrogen oxides (NOx) emission. This study is aimed to compare the effect of applying a biodiesel with either 10% blended methanol or 10% fumigation methanol. The biodiesel used in this study was converted from waste cooking oil. Experiments were performed on a 4-cylinder naturally aspirated direct injection diesel engine operating at a constant speed of 1800 rev/min with five different engine loads. The results indicate a reduction of CO2, NOx, and particulate mass emissions and a reduction in mean particle diameter, in both cases, compared with diesel fuel. It is of interest to compare the two modes of fueling with methanol in combination with biodiesel. For the blended mode, there is a slightly higher brake thermal efficiency at low engine load while the fumigation mode gives slightly higher brake thermal efficiency at medium and high engine loads. In the fumigation mode, an extra fuel injection control system is required, and there is also an increase in CO, HC and NO2 (nitrogen dioxide) and particulate emissions in the engine exhaust, which are disadvantages compared with the blended mode.  相似文献   

18.
In this paper fuels, based on various DME to diesel ratios are investigated. Physical and chemical properties of DME and diesel display mutual solubility at any ratio. The vapor pressure of DME/diesel blends is lower than that of pure DME at the same temperatures and it decreases with an increase of diesel mass fraction in blends, which is beneficial to the elimination of vapor lock in the fuel supply system on CI engines. Performance, emission and other features of three kinds of DME/diesel blend fuels and diesels are evaluated in a four-cylinder test engine. By taking relative advantages of DME and diesel, the DME/diesel blends could achieve satisfactory properties in lubricity and atomization, which contributed to improvements in spray and combustion characteristics. Simultaneously, smoke emission could be reduced significantly with a little penalty on CO and HC emissions for DME/diesel blended engine at high loads, in comparison to diesel engine. NOx emissions of the engine powered by DME/diesel blends are decreased somewhat. Moreover, the power output would be improved a little and NOx emission could be reduced further if the fuel supply advance angle is retarded appropriately.  相似文献   

19.
Lei Zhu  C.S. Cheung  W.G. Zhang 《Fuel》2011,90(5):1743-1750
In this study, Euro V diesel fuel, biodiesel, and ethanol-biodiesel blends (BE) were tested in a 4-cylinder direct-injection diesel engine to investigate the combustion, performance and emission characteristics of the engine under five engine loads at the maximum torque engine speed of 1800 rpm. The results indicate that when compared with biodiesel, the combustion characteristics of ethanol-biodiesel blends changed; the engine performance has improved slightly with 5% ethanol in biodiesel (BE5). In comparison with Euro V diesel fuel, the biodiesel and BE blends have higher brake thermal efficiency. On the whole, compared with Euro V diesel fuel, the BE blends could lead to reduction of both NOx and particulate emissions of the diesel engine. The effectiveness of NOx and particulate reductions increases with increasing ethanol in the blends. With high percentage of ethanol in the BE blends, the HC, CO emissions could increase. But the use of BE5 could reduce the HC and CO emissions as well.  相似文献   

20.
This paper presents experimental results of rapeseed methyl ester (RME) and diesel fuel used separately as pilot fuels for dual-fuel compression-ignition (CI) engine operation with hydrogen gas and natural gas (the two gaseous fuels are tested separately). During hydrogen dual-fuel operation with both pilot fuels, thermal efficiencies are generally maintained. Hydrogen dual-fuel CI engine operation with both pilot fuels increases NOx emissions, while smoke, unburnt HC and CO levels remain relatively unchanged compared with normal CI engine operation. During hydrogen dual-fuel operation with both pilot fuels, high flame propagation speeds in addition to slightly increased ignition delay result in higher pressure-rise rates, increased emissions of NOx and peak pressure values compared with normal CI engine operation. During natural gas dual-fuel operation with both pilot fuels, comparatively higher unburnt HC and CO emissions are recorded compared with normal CI engine operation at low and intermediate engine loads which are due to lower combustion efficiencies and correspond to lower thermal efficiencies. This could be due to the pilot fuel failing to ignite the natural gas-air charge on a significant scale. During dual-fuel operation with both gaseous fuels, an increased overall hydrogen-carbon ratio lowers CO2 emissions compared with normal engine operation. Power output (in terms of brake mean effective pressure, BMEP) as well as maximum engine speed achieved are also limited. This results from a reduced gaseous fuel induction capability in the intake manifold, in addition to engine stability issues (i.e. abnormal combustion). During all engine operating modes, diesel pilot fuel and RME pilot fuel performed closely in terms of exhaust emissions. Overall, CI engines can operate in the dual-fuel mode reasonably successfully with minimal modifications. However, increased NOx emissions (with hydrogen use) and incomplete combustion at low and intermediate loads (with natural gas use) are concerns; while port gaseous fuel induction limits power output at high speeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号