首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y.C. Guo  K.S. Lau 《Fuel》2003,82(8):893-907
A pure two-fluid model for turbulent reacting gas-particle flow of coal particles is developed using a unified Eulerian treatment of both the gas and particle phases. The particles' history caused by mass transfer due to moisture evaporation, devolatilization and char reaction is described. Both velocity and temperature of the coal particles and the gas phase are predicted by solving the momentum and energy equations of the gas and particle phases, respectively. A k-ε-kk two-phase turbulence model, EBU-Arrhenius turbulent combustion model and four-flux radiation heat transfer model are incorporated into a comprehensive model. The above comprehensive mathematical model is used to simulate two-dimensional gas-particle flows and pulverized coal combustion in a newly designed tubular oxygen-coal combustor of blast furnace. Predicted results of isothermal gas-particle flows are in good agreement with those obtained by measurements. The results also show that the proposed tubular oxygen-coal combustor prolongs the coal particle residence time and enhances the mixing of coal and oxygen. Results indicate that smaller coal particles of 10 μm diameter are heated and devolatilized rapidly and have volatile combustion in the combustor, while larger coal particles of 40 and 70 μm in diameter are heated but not devolatilized, and combustion of such particles does not occur in the tubular combustor.  相似文献   

2.
Hongtao Zhang 《Fuel》2010,89(5):1177-1180
The effects of gas temperature fluctuation on the NO release from pulverized coal particle during char combustion are investigated. The computed results show that the NO formation through the heterogeneous oxidation and reduction reactions is influenced by the gas temperature fluctuation for the particles with initial diameters of 10-50 μm. The gas temperature fluctuation leads to faster NO release from the particle. The heterogeneous NO formation during the char combustion is further enhanced by the increase in the fluctuation amplitude of gas temperature.  相似文献   

3.
J.R. Bunt  N.J. Wagner 《Fuel》2009,88(5):771-779
Char-form analysis, whilst not yet an ISO standard, is a relatively common characterization method applied to pulverized coal samples used by power utilities globally. Fixed-bed gasification coal feeds differ from pulverized fuel combustion feeds by nature of the initial particle size (+6 mm, −75 mm). Hence it is unlikely that combustion char morphological characterization schemes can be directly applied to fixed-bed gasifier chars. In this study, a unique carbon particle type analysis was developed to characterize the physical (and inferred chemical) changes occurring in the particles during gasification based on coal petrography and combustion char morphology. A range of samples sequentially sampled from a quenched commercial-scale Sasol-Lurgi fixed-bed dry-bottom (FBDB) Gasifier were thus analysed.It was determined that maceral type (specifically vitrinite and inertinite) plays a pivotal role in the changes experienced by carbon particles when exposed to increasing temperature within the gasifier. Whole vitrinite particles and vitrinite bands within particles devolatilized first, followed at higher temperatures by reactive inertinite types. By the end of the pyrolysis zone, all the coal particles were converted to char, becoming consumed in the oxidation/combustion zone as the charge further descended within the gasifier.The carbon particle type results showed that both the porous and carbominerite char types follow similar burn-out profiles. These char types formed in the slower pyrolysis region within the pyrolysis zone, increasing to around 10% by volume within the reduction zone, where 53% carbon conversion occurred. Both of these char forms were consumed by the time the charge reached the ash-grate at the base of the reactor, and therefore did not contribute to the carbon loss in the ash discharge. It would appear as if the dense char and intermediate char types are responsible for the few percent carbon loss that is consistently obtained at the gasification operations.The carbon particle type analysis developed for coarse coal to the gasification process was shown to provide a significant insight into the behaviour of the carbon particles during gasification, both as a stand alone analysis and in conjunction with the other chemical and physical analyses performed on the fixed-bed gasifier samples.  相似文献   

4.
为实现富氧燃烧技术的广泛推广,对煤粉燃烧在富氧气氛下的颗粒物排放特性进行了研究。在1800 K管式炉内进行煤焦燃烧试验,研究了富氧气氛下H2O(g)体积分数(0、5%、10%、20%、30%)对煤焦燃烧超细颗粒物的影响;采用荷电低压撞击器(ELPI+)获得超细颗粒物质量和数量浓度粒径分布并进行分析。结果表明,H2O(g)对超细颗粒物质量浓度和数量浓度粒径分布无影响,但会导致超细颗粒物的峰值波动。超细颗粒物总数量由最小粒径超细颗粒物决定,5种水蒸气浓度下EL?PI+第1级撞击器收集到的超细颗粒物数量占比均超过65%。超细颗粒物总质量由最大粒径超细颗粒物决定,5个水蒸气浓度下ELPI+第7级撞击器收集到的超细颗粒物质量占比均超过94%。低H2O(g)浓度会抑制超细颗粒物生成,H2O(g)体积分数为5%时的抑制作用最显著;高H2O(g)浓度会促进超细颗粒物生成。这是因为一方面H2O(g)与煤焦发生气化反应,使煤焦颗粒周围产生还原性气氛,促进矿物质还原为单质,进一步促进矿物质蒸发;另一方面气化反应是吸热反应,会降低煤焦颗粒燃烧温度,同时H2O(g)加入也导致烟气热容增加进一步降低,煤焦燃烧温度抑制煤中矿物质的蒸发,导致超细颗粒物生成减少,是2种作用相互竞争的结果。此外,H2O(g)的加入使超细颗粒物平均粒径增大,0~5%H2O(g)时超细颗粒物平均粒径增大最迅速。  相似文献   

5.
Ultrafine α-Al2O3 powders were prepared by a gel combustion method and the agglomeration characteristic of the resultant powders was studied. A variety of fine crystallite α-Al2O3 powders with different agglomeration structures could be obtained by altering the citrate-to-nitrate ratio γ and calcining the precursors at 1050 °C for 2 h. All the powders were of nearly equivalent crystallite size (60–80 nm) except for the P1 powder (113 nm) from the gel with γ = 0.033. The primary crystallites of the obtained α-Al2O3 powders were formed into large secondary particles with different degree of agglomeration. Except for the powder P1, the mean particle sizes from specific surface area and particle size distribution measurement increase with increasing citrate-to-nitrate ratio in the fuel-lean condition and decrease in the fuel-rich condition. Densities of alumina ceramics from powders P4 and P5 sintered at different temperatures were relatively low due to the wide particle size distribution.  相似文献   

6.
J.R. Bunt  F.B. Waanders 《Fuel》2009,88(4):585-594
The Sasol-Lurgi fixed-bed dry-bottom (FBDB) MKIV gasifiers are proven to be robust as far as acceptable coal properties are concerned, in particular its ability to accommodate a range of particle size distributions (PSD) fractions. Over the years, the findings from a number of studies conducted at Sasol have played a key role in the optimization of the Sasol-Lurgi gasifiers as far as the limited amount of coal preparation by crushing and screening is concerned. The continued optimization efforts by Sasol over many years have led to a robust and reliable gasification technology for coal conversion, and more improvements are envisaged for the near future.In this study, gasification profiles inside real coal beds were investigated experimentally using a pilot scale combustor unit (pipe reactor), where the top size of the coal blend was systematically reduced from 75 mm, 53 mm and 37.5 mm. The pilot scale combustor has an inside diameter of 400 mm, is approximately 3 m long and the combustion rate is controlled by regulating the oxygen/nitrogen ratio of the gas feed. Ash is not removed continuously, so the combustion front moves upwards through the coal bed with time, resulting in a temperature gradient across the bed. The combustion process can be stopped at any point in time by removing all of the oxygen from the feed gas (i.e. quenching with nitrogen). The combustor was constructed so that it can be tilted onto its side and opened up like a coffin to allow sample taking and visual inspection of the combustion profile. In this case, equivalent sized slices were taken across the length of the reactor bed contents and the samples were analysed for PSD, proximate analysis, ultimate analysis, Fisher assay and coal char CO2 reactivity. This paper focuses on the coal property transformational behaviour (as characterized by the proximate analysis and Fischer tar results) through packed coal beds of different feed coal size distributions.The proximate analysis results showed clear reaction zone profiles to be occurring within the pipe reactor, i.e. drying, pyrolysis, reduction and combustion (ash bed) zones, in agreement with the SL-FBDB MKIV commercial-scale findings. It was found that a decrease in feed coal particle size resulted in better heat transfer across the particles with ensuing faster volatile matter and tar evolution.  相似文献   

7.
Ash particles smaller than 2.5 μm in diameter generated during pulverized coal combustion are difficult to capture and may pose greater harm to the environment and human health than the discharge of larger particles. Recent research efforts on coal ash formation have revealed a middle fine-fragment mode centered around 2 μm. Formation of this middle or fine-fragment mode (FFM) is less well understood compared to larger coarse and smaller ultrafine ash. This study is part of an overall effort aimed at determining the key factors that impact the formation of FFM. This work examined the effects of oxygen-to-fuel stoichiometry (OFS).Pulverized Illinois #6 bituminous coal was combusted and the ash generated was size segregated in a Dekati low pressure inertial impactor. The mass of each fraction was measured and the ash was analyzed using scanning electron microscopy (SEM) and X-ray microanalysis. The FFM ash types were classified based on the SEM images to evaluate the significant fine-fragment ash formation mechanisms and determine any possible link between stoichiometry and formation mechanism.From the particle size distributions (PSDs), the coarse mode appears unaffected by the change in OFS, however, the OFS 1.05 lowered the fraction of ultrafine ash in relation to the higher OFS settings, and appears to increase the portion of the FFM. An intermediate minimum was found in the FFM at 1.3 μm for the 1.20 and 1.35 OFS tests but was not observed in the 1.05 OFS. SEM analysis also suggests that OFS may contribute to changing formation mechanisms.  相似文献   

8.
ABSTRACT

In this work, the vaporization of the ash forming constituents in circulating fluidized bed combustion (CFBC) in a full-scale 80 MWth unit was studied. Ash vaporization in CFBC was studied by measuring the fly ash aerosols in a full-scale boiler upstream of the electrostatic precipitator (ESP) at the flue gas temperature of 125°C. The fuel was a Venezuelan bituminous coal, and a limestone sorbent was used during the measurements. The fly ash number size distributions showed two distinct modes in the submicrometer size range, at particle diameters 0.02 and 0.3 μm. The concentration of the ultrafine 0.02-μm mode showed a large variation with time and it decreased as the measurements advanced. The concentration of the 0.02-μm mode was two orders of magnitude lower than in the submicrometer mode observed earlier in the bubbling FBC and up to three orders of magnitude lower than in the pulverized coal combustion. Scanning electron micrographs showed few ultrafine particles. The intermediate mode at 0.3 μm consisted of particles irregular in shape, and hence in this mode the particles had not been formed via a gas to particle route. We propose that the 0.3-μm mode had been formed from the partial melting of the very fine mineral particles in the coal. The mass size distribution in the size range 0.01–70 μm was unimodal with maximum at 20 μm. Less than 1% of the fly ash particles was found in the submicrometer size range. Ninety percent of Mg in coal was organically bound, and it was found to react with quartz and aluminosilicate minerals inside the coal particle. No Mg was found to be released to the gas phase and Mg mass fraction size distribution was size independent. A fraction of halogens CI, Br and I were found to be in the gas phase after the combustion.  相似文献   

9.
Super fine pulverized coal combustion is a new pulverized coal combustion technology which has better stability, higher combustion efficiency and lower NOx and SO2 emission than that using conventional particle sizes. In this paper we applied fractal analysis based on power spectral density (PSD) and slit island method (SIM), three-dimensional (3D) surface roughness measurement and surface-topography observations from AFM to form a proper investigative tool which may give a relatively full picture of surface morphology of super fine pulverized coal particles for the first time. The final results indicate that both fractal dimensions calculated by SIM and PSD and roughness of coal particle size increase with the increase of the coal particle size. Besides, the grey relational analysis was used to study the degree of relative importance of the influential factors about the microroughness of coal particle surfaces. The results show that the influence of the coal particle size is the greatest compared with the coal qualities and fractal dimensions.This work provides some reference for a relatively full picture of surface morphology of super fine pulverized coal particles. The findings from this work will be helpful to form the basis and provide guidance for further studies on the chemical and combustion characteristics of super fine pulverized coal particles.  相似文献   

10.
Qing Shang  Lixing Zhou 《Fuel》2005,84(16):2071-2079
The heterogeneous char reaction processes of pulverized coal particle in a hot gas flow with temperature fluctuation are investigated. The instantaneous mass variations and char reaction rates of the particles with initial diameters of 10-50 μm are calculated under different conditions. The gas temperature fluctuation has evident influences on the instantaneous char reaction processes of the pulverized coal particles. The instantaneous char reaction rates with the gas temperature fluctuation are different from those without the gas temperature fluctuation. The gas temperature fluctuation leads to more rapid char reaction and faster mass loss of the particles. The effects of fluctuation amplitude of the gas temperature and particle Reynolds number on the instantaneous char reaction processes are delineated.  相似文献   

11.
燃烧源超细颗粒物的研究进展   总被引:3,自引:1,他引:3  
燃烧源超细颗粒物已成为大气环境污染的突出问题,并日益引起世界各国的高度重视,对燃烧源超细颗粒物的国内外研究现状进行了评述,介绍了超细颗粒物在大气中的分布和来源、超细颗粒物的危害以及燃煤电厂超细颗粒物排放和控制方法,并总结了超细颗粒物研究的难点所在,指出了进一步研究的重点和方向。  相似文献   

12.
小龙潭褐煤燃烧细粒子生成演化的实验研究   总被引:2,自引:0,他引:2  
为了解煤燃烧过程中细粒子的分布特征和形成机理 ,进行了小龙潭褐煤的滴管炉燃烧实验 .收集的细粒子尺寸分布和形貌已经在不同的操作参数下进行了测量 ,由此得到细粒子的分布特征并探讨燃烧过程中温度对细粒子生成的影响 ,同时利用 SEM分析细粒子生成演化的过程 .煤粉燃烧细粒子的粒径分布呈典型的双峰分布 .不同燃烧温度下 ,细粒子尺寸的变化说明细粒子的形成机理是气化—成核—凝聚机理 ,并且测得的细粒子生成演化的 SEM图样与细粒子生成机理相吻合 .  相似文献   

13.
Zhi Ma 《Polymer》2004,45(20):6789-6797
Dispersion polymerization of 2-hydroxyethyl methacrylate (HEMA) has been successfully performed in supercritical carbon dioxide at P=370 bar and T=65 °C with azobis(isobutyronitrile) as initiator and a hydrophilic/CO2-philic poly(ethylene oxide)-b-poly(1,1,2,2-tetrahydroperfluorodecyl acrylate) (PEO-b-PFDA) block copolymer as steric stabilizer. The PEO-b-PFDA (2K/21K) block copolymer was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Spherical particles of poly(HEMA) were obtained in the range of 200-400 nm diameter size with a narrow particle size distribution (Dw/Dn<1.1). The effect of the stabilizer concentration on the dispersion polymerization was investigated from 20 w/w% down to 3.5 w/w% versus HEMA. Precipitation polymerization in the absence of stabilizer lead to the formation of large aggregates of partially coalesced particles whereas discrete spherical particles of poly(HEMA) were obtained by dispersion polymerization even at low concentration of PEO-b-PFDA (3.5 w/w% versus HEMA).  相似文献   

14.
The effect of coal particle size on pyrolysis and steam gasification   总被引:3,自引:0,他引:3  
For future power generation from coal, one preferred option in the UK is the air-blown gasification cycle (ABGC). In this system coal particles sized up to 3 mm, perhaps up to 6 mm in a commercial plant, are pyrolysed and then gasified in air/steam in a spouted bed reactor. As this range of coal particle sizes is large it is of interest to investigate the importance of particle size for those two processes. In particular the relation between the coal and the char particle size distribution was investigated to assess the error involved in assuming the coal size distribution at the on-set of gasification. Different coal size fractions underwent different changes on pyrolysis. Smaller coal particles were more likely to produce char particles larger than themselves, larger coal particles had a greater tendency to fragment. However, for the sizes investigated in this study ranging from 0.5 to 2.8 mm, the pyrolysis and gasification behaviour was found not to vary significantly with particle size. The coal size fractions showed similar char yields, irrespective of the different char size distributions resulting from pyrolysis. Testing the reactivity of the chars in air and CO2 did not reveal significant differences between size fractions of the char, nor did partial gasification in steam in the spouted bed reactor. From the work undertaken, it can be concluded that pyrolysis and gasification within the range of particle sizes investigated are relatively insensitive to particle size.  相似文献   

15.
采用微反应器对共沉淀法制备超细碳酸钡进行了研究,考察了反应物流速、反应温度、反应物浓度、添加分散剂等因素对超细碳酸钡颗粒形貌及粒径的影响,并用场发射扫描电镜、激光粒度分析仪和比表面积分析仪对所制备的碳酸钡颗粒进行了表征.结果表明,采用微反应器可制得粒度分布均匀、长径比为4的柱状和粒径约为300 nm的球状超细碳酸钡颗粒.  相似文献   

16.
Wang Wei 《Powder Technology》2011,212(3):403-409
The calculation reliability of pressure drop and gas-solid drag force in horizontal dilute phase pneumatic conveying strongly depends on the accuracy of gas-solid velocity correlation. However, there are limited studies on the solid velocity in horizontal dilute phase pneumatic conveying and it is important to further validate suitability of existing correlation of gas-solid velocity, especially for fine particles (such as pulverized coal). Consequently, in this paper, a negative pressure pneumatic conveying test rig is set up and two kinds of powders with different sizes are adopted. Optical fiber probe (OFP) was used to measure the volumetric solid concentration and particle velocity. The volumetric solid concentration was also calculated by using the measured particle velocity. The results show that the solid concentrations obtained by the two methods have good agreement, and discrepancy is within ± 20%. It was found the particle velocities are different in the upper and lower part of the cross-section in the horizontal pipe. However, the difference is generally no more than 2 m/s. The velocity difference will decrease with the increasing gas velocity, and increases with the solid mass flow rate. In the experimental condition of 0.06 mm < ds < 0.35 mm, 1400 kg/m3 < ρs < 2600 kg/m3, the implicit correlation based on Yang's Unified Theory gives the best prediction of particle velocity among existing studies but still with noticeable discrepancy with the comparison of the present experimental data. By modifying the solid friction factor, an improved correlation of the particle velocity was obtained, which agrees better with the experimental data given in the present and literature studies.  相似文献   

17.
Ultrafine crystalline SnO2 particles (2-3 nm) dispersed carbon matrix composites are prepared by a sol-gel method. Citric acid and hydrous SnCl4 are used as the starting constituents. The effect of the calcination temperatures on the structure and electrochemical properties of the composites has been studied. Structure analyses show that ultrafine SnO2 particles form and disperse in the disordered carbon matrix in the calcination temperature range of 500-800 °C, forming SnO2/C composites, and the carbon content shows only a slight increase from 35.8 wt.% to 39.1 wt.% with the temperature. Nano-Sn particles form when the calcination temperature is increased to 900 °C, forming a SnO2/Sn/C composite, and the carbon content is increased to 49.3 wt.%. Electrochemical testing shows that the composite anodes provide high reversible cycle stability after several initial cycles, maintaining capacities of 380-400 mAh g−1 beyond 70 cycles for the calcination temperature of 600-800 °C. The effect of the structure feature of the ultrafine size of SnO2 and the disordered carbon matrix on the lithium insertion and extraction process, especially on the reversible behavior of the lithium ion reaction during cycling, is discussed.  相似文献   

18.
Aerosols from combustion sources are of high concern since they present a risk for health and environment. Particle size distribution of aerosols and in particular number size distribution are easily and quickly obtained using an Electrical Low Pressure Impactor (ELPI). However, this technique is depending of aerosol density; ρ, which may lead to biased particle size distributions. Aerosol density from combustion sources is usually not well known and depends on several parameters. Aerosol density cannot be measured with usual methods since there is generally not enough matter collected on each stage of the ELPI. Our approach uses electronic microscopy to evaluate ρ at each impaction stage in order to increase the accuracy of the number size distributions resulting from the ELPI measurements.Particles were collected on glass substrates deposited on each impaction stages. Images were obtained using a scanning electron microscope and image processing tools were applied.This method was first tested with silica particles resulting from a combustion process which have a constant density found to be comprised between 2.2 and 2.4 g cm−3 for stages 2 (57 and 95 nm) and 3 (95 and 158 nm), respectively. Once validated, this method was used to determine the density of wood combustion aerosols. The results match well for fly ashes from wood combustion with densities varying from 1.1 to 3.0 g cm−3 for particles of mean equivalent diameter ranging from 69 to 157 nm, respectively.  相似文献   

19.
Three types of coal with the different melting temperature and ash content were burned under the condition of high-temperature air pulverized coal reaction. A water-cooled tube was inserted into the furnace to make the ash adhere. Particle size and composition distributions of ash particles in both reacting coal particles and depositing layer were analyzed, using a Computer Controlled Scanning Electron Microscope, to study the deposition behaviors of ash particles. As a result, quantity of the ash deposition on the tube surface increases with a decrease of the melting temperature of coal ash. Index of fraction of the ash deposition depended on the coal type. For structure of the deposit layer, fine particles of size less than 3 μm mainly consisted of the initial layer for three types of coal, and the thickness was about 30 μm. Deposition of fine particulates of about 3 μm became a trigger of initial deposition at the stagnation point of tube even if irrespective of coal type is burned. The chemical compositions of ash particles in the reacting particles differed from those in the initial deposition layer. The deposition phenomenon relates to the particle size distribution of ash formed, the flow dynamics surrounding the probe, the chemical compositions in each ash particle and so forth.  相似文献   

20.
Computational Fluid Dynamics (CFD) simulation of commercial-scale two-stage upflow and single-stage downflow entrained-flow gasifiers was conducted to study effects of simulating both the coal particle density and size variations. A previously-developed gasification CFD model was modified to account for coal particle density and size distributions as produced from a typical rod mill. Postprocessing tools were developed for analysis of particle-wall impact properties.For the two-stage upflow gasifier, three different simulations are presented: two (Case 1 and Case 2) used the same devolatilization and char conversion models from the literature, while Case 3 used a different devolatilization model. The Case 1 and Case 3 solutions used average properties of a Pittsburgh #8 seam coal (d = 108 μm, SG = 1.373), while Case 2 was obtained by injecting and tracking all of the series of 28 different coal particle density and size mass fractions obtained by colleagues at PSU as a part of the current work, for this same coal. Simulations using the two devolatilization models (Case 1 and Case 3) were generally in reasonable agreement. Differences were observed between the single-density solution and the density/size partitioned solution (Case 1 and Case 2). The density/size partitioned solution predicted nominally 10% less CO and over 5% more H2 by volume in the product gas stream. Particle residence times and trajectories differed between these two solutions for the larger density/size fractions. Fixed carbon conversion was 4.3% higher for the partitioned solution. Particle-wall impact velocities did not vary greatly.Grid independence studies for the two-stage upflow gasifier geometry showed that the grid used in the comparison studies was adequate for predicting exit gas composition and wall impact velocities. Validation studies using experimental data for the Pittsburgh #8 coal from the SRI International pressurized coal flow reactor (PCFR) at 30 atmospheres indicated adequate agreement for gasification and combustion cases, but poor agreement for a pyrolysis case. Simulation of a single-stage downflow gasifier yielded an exit gas composition that was in reasonable agreement with published data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号