首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Roy K  Lahiri S 《Analytical chemistry》2008,80(19):7504-7507
Synthesis of gold-palladium bimetallic nanoparticles using in situ radioactivity from (198)Au isotope is reported in this paper. Gold solution spiked with (198)Au(III) has been mixed with PdCl2 solution in measured proportions in 50% polyethylene glycol solution. Au(III) and Pd(II) are reduced, and nanoparticles are formed due to radiolysis of the polymer solution. The solution has been characterized by UV-visible spectra, and the actual size has been determined using transmission electron microscopy in conjugation with energy dispersive X-ray measurements.  相似文献   

2.
采用溶胶-凝胶法制备了ZnO量子点, 并采用有机高分子试剂PEG(聚乙二醇, Mw=2000)对其表面进行修饰。借助X射线衍射分析、傅立叶红外光谱、光致发光谱和透射显微镜等测试方法, 研究了PEG表面修饰对ZnO量子点结构和光学性能的影响规律。研究表明, 混合加入的PEG聚合物能够成功地包覆在ZnO量子点表面, 但没有改变量子点的晶体结构, 经PEG表面修饰后的ZnO量子点尺寸变小, 稳定性增强, 分散更均匀。同时经PEG修饰的ZnO量子点在400~500 nm波长区域缺陷态发射峰明显减弱, 表明采用PEG来改善ZnO量子点表面缺陷结构具有良好效果。  相似文献   

3.
Anisotropic silver nanoparticles (NPs) have been synthesized rapidly using microwave irradiation by the decomposition of silver oxalate in a glycol medium using polyvinyl pyrolidone (PVP) as the capping agent. The obtained Ag nanoparticles have been characterized by UV-visible spectroscopy, powder x-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) studies. Anisotropic Ag nanoparticles of average size around 30?nm have been observed in the case of microwave irradiation for 75?s whereas spherical particles of a size around 5-6?nm are formed for 60?s of irradiation. The texture coefficient and particle size calculated from XRD patterns of anisotropic nanoparticles reveal the preferential orientation of (111) facets in the Ag sample. Ethylene glycol is found to be a more suitable medium than diethylene glycol. A plausible mechanism has been proposed for the formation of anisotropic Ag nanoparticles from silver oxalate.  相似文献   

4.
Properties of Solid Dispersions of Naproxen in Various Polyethylene Glycols   总被引:4,自引:0,他引:4  
Solid dispersions of naproxen in polyethylene glycol 4000, 6000, and 20000, aimed at improving the drug dissolution characteristics, were prepared by both the solvent and melting methods. The drug-polymer interaction in the solid state was investigated using differential scanning calorimetry, hot-stage microscopy, Fourier-transform infrared spectroscopy, and x-ray diffraction analysis. Interaction in solution was studied by phase solubility analysis and dissolution experiments. Computer-aided molecular modeling was used to supplement the results from phase solubility studies. No important chemical interaction was found between naproxen and polyethylene glycol, either in solution or in the solid state, apart from the formation of weak drug-polymer hydrogen bonds. The increase of naproxen dissolution rate from its binary systems with polyethylene glycol could be attributed to several factors such as improved wettability, local solubilization, and drug particle size reduction. No influence of polymer molecular weight or of the solid dispersion preparation method on drug dissolution properties was found.  相似文献   

5.
Abstract

Solid dispersions of naproxen in polyethylene glycol 4000, 6000, and 20000, aimed at improving the drug dissolution characteristics, were prepared by both the solvent and melting methods. The drug-polymer interaction in the solid state was investigated using differential scanning calorimetry, hot-stage microscopy, Fourier-transform infrared spectroscopy, and x-ray diffraction analysis. Interaction in solution was studied by phase solubility analysis and dissolution experiments. Computer-aided molecular modeling was used to supplement the results from phase solubility studies. No important chemical interaction was found between naproxen and polyethylene glycol, either in solution or in the solid state, apart from the formation of weak drug-polymer hydrogen bonds. The increase of naproxen dissolution rate from its binary systems with polyethylene glycol could be attributed to several factors such as improved wettability, local solubilization, and drug particle size reduction. No influence of polymer molecular weight or of the solid dispersion preparation method on drug dissolution properties was found.  相似文献   

6.
The present research investigates the enhancement of the dissolution rate of celecoxib by using spray-drying to prepare a solid dispersion with various polymers, namely Kollicoat IR? (Kollicoat), polyvinyl alcohol (PVA) 22000, or polyethylene glycol 6000 (PEG). The investigated drug-to-polymer mass ratios were 1:1, 1:2, and 1:4 by weight. Hydroalcoholic or methylene chloride solvent systems were used. The obtained yields ranged from 65% to 78%, whereas the entrapment efficiencies were between 68% and 82%. The results revealed an increase in the dissolution rate of the prepared particles up to 200% within 20 min. The prepared particles were investigated using differential scanning calorimetry, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The increased dissolution rate was attributed to hydrogen bond formation between celecoxib and each polymer together with the reduced size of the formed particles offering a greater overall surface area. It was concluded that spray-drying may be considered a successful one-step technique to improve the dissolution rate of celecoxib when using Kollicoat, PVA, or PEG as the carrier polymer.  相似文献   

7.
In this study nickel nanoparticles were prepared via chemical reduction of nickel acetate using sodium borohydride using electrohydrodynamic atomization (EHDA) technique. This technique was used to spray a finely dispersed aerosol of nickel precursor solution into the reductive bath. Obtained particles were characterized by means of X-ray diffraction (XRD), UV–Visible spectroscopy, and transmission electron microscopy (TEM). Results confirmed the formation of nickel nanoparticles and showed that applying EHDA technique to chemical reduction method results in producing smaller particles with narrower size distribution in comparison with conventional reductive precipitation method.  相似文献   

8.
Polymer magnetic core particles receive growing attention due to these materials owing magnetic properties which are widely used in different applications. The prepared composite particles are characterized with different properties namely: a magnetic core, a hydrophobic first shell, and finally an external second hydrophilic shell. The present study describes a method for the preparation of bi-layered polymer magnetic core particles (diameter range is 50–150 nm). This method comprises several steps including the precipitation of the magnetic iron oxide, coating the magnetite with oleic acid, attaching the first polymer shell by miniemulsion polymerization and finally introducing hydrophilic surface properties by condensation polymerization. The first step is the formation of magnetite nanoparticles within a co-precipitation process using oleic acid as the stabilizing agent for magnetite. The second step is the encapsulation of magnetite into polyvinylbenzyl chloride particles by miniemulsion polymerization to form a magnetic core with a hydrophobic polymer shell. The hydrophobic shell is desired to protect magnetite nanoparticles against chemical attack. The third step is the coating of magnetic core hydrophobic polymer shell composites with a hydrophilic layer of polyethylene glycol by condensation polymerization. Regarding the miniemulsion polymerization the influence of the amount of water, the mixing intensity and the surfactant concentration were studied with respect to the formation of particles which can be further used in chemical engineering applications. The resulting magnetic polymer nanoparticles were characterized by particle size measurement, chemical stability, iron content, TEM, SEM, and IR.  相似文献   

9.
In this report, we show a novel and simple preparation method for obtaining block-copolymer nanoparticles. Regular-sized polymer nanoparticles are formed after evaporation of a good solvent from a polymer solution containing a non-volatile poor solvent and the volatile good solvent. Nanoparticles of poly(styrene-b-sodium acrylate), poly(styrene-b-4-vinylpyridine), and poly(styreneb-isoprene) were prepared by using this method. We also discuss the difference of internal structures between amphiphilic and hydrophobic block-copolymer nanoparticles. From the results of scanning transmission electron microscope (STEM) imaging, the particles of amphiphilic block-copolymers have hollow structures were observed. On the other hand, the particles of a hydrophobic block-copolymer form lamellar micro-phase separation structures.  相似文献   

10.
宋凯杰  王晓梅  万红敬  黄红军 《材料导报》2018,32(Z1):368-372, 389
实验采用无皂乳液聚合法,以NaHCO_3为中和剂,合成了一系列不同中和度的聚苯乙烯-丙烯酸(PS-AA)粒子。分别通过一步法、两步法合成了两种PS-AA粒子,并通过扫描电镜(SEM)观察了两种粒子的微观形貌。采用高能球磨法将粒子分散到聚乙二醇中,制备得到PS-AA/PEG剪切增稠液(STF),并通过动态流变仪稳态扫描测试了其聚乙二醇悬液的剪切增稠特性,结果表明用两步法合成的粒子作分散相可制备出优良的剪切增稠液。通过红外光谱、热重-DSC、扫描电镜、激光粒度分布仪对不同中和度的粒子进行了表征,并通过动态流变仪对其聚乙二醇悬液流变性能进行表征。结果表明,实验成功合成了不同中和度且表面光滑、粒径均一的核壳状的PS-AA粒子,并以此制备出性能优异的剪切增稠液,得出最优中和度为45%和50%。其中50%中和度PS-AA粒子,其质量浓度为64%的聚乙二醇悬液最大粘度高达2 200Pa·s,该性能在抗外力防护领域研究成果内出类拔萃。  相似文献   

11.
We synthesized AuPt alloyed nanoparticles in colloidal solution by a one-pot procedure based on synchrotron x-ray irradiation in the presence of PEG (polyethylene glycol). The exclusive presence of alloyed nanoparticles with fcc structure was confirmed by several different experiments including UV-vis spectroscopy, x-ray diffraction (XRD) and transmission electron microscopy (TEM). The composition of the AuPt alloyed nanoparticles can be varied in a continuous fashion by simply varying the feed ratios of Au and Pt precursors. The nanoparticles exhibited colloidal stability and biocompatibility, important for potential applications.  相似文献   

12.
In the present work, we investigate the surface, and bulk structural properties of composite cupric oxide ribbons, and zinc oxide particles. The composites are synthesized using the technique of solution combustion. Crystallographic phases are confirmed using the x-ray diffraction technique and proved the formation of monoclinic cupric oxide and hexagonal zinc oxide crystallites. Scanning electron microscope and high-resolution transmission electron microscope are used to examine the morphology of the prepared materials. Composite mixtures of raw particles cupric oxide and zinc oxide are used as benchmark morphologically-alike composite materials. The specific surface area values of the studied materials are investigated using nitrogen gas adsorption at 77 K while the spectroscopic gamma ray attenuation is used to determine the effective density of the different samples. Zinc oxide particles are dispersed on cupric oxide ribbons and cause nonlinear dependence of the specific surface area and density on the composition ratio due to the physical contact between particles, especially at the voids and the nodes of the fibrous ribbons network.  相似文献   

13.
Silver nanoparticles of high chemical homogeneity have been synthesized by a novel laser–liquid–solid interaction technique from a solution composed of silver nitrate, distilled water, ethylene glycol, and diethylene glycol. Rotating nickel, niobium, stainless steel, and ceramic Al2O3 substrates were irradiated using a continuous-wave CO2 laser and Q-switched Nd–YAG laser ( = 1064 and 532 nm). The silver nanoparticles were characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe x-ray microanalysis (EPMA). The shape of silver particles was dependent on the chemical composition and laser parameters. The synthesis mechanism of silver nanoparticles has been proposed to occur primarily at the laser–liquid–substrate interface by a nucleation and growth mechanism.  相似文献   

14.
ZnO nanoparticles have been synthesized from the cupferron complex by a solvothermal route in toluene solution. The nanoparticles have been prepared in the presence of various capping agents, of which the best results were obtained with tri-n-octylphosphine oxide, polyethylene glycol, and sodium bis (2-ethylhexyl) sulphosuccinate. The particles obtained with these capping agents have diameters in the 8-14 nm range. The nanoparticles have been characterized by electron microscopy, UV absorption spectroscopy, and photoluminescence spectroscopy, besides x-ray diffraction. Optical spectra of the small nanoparticles show evidence for quantum confinement. ZnO nanoparticles doped with 5% and 10% Mn could be prepared by the solvothermal route starting with a Zn(1-x)Mnx cupferron complex, and the Mn-doped nanoparticles remain paramagnetic down to 5K.  相似文献   

15.
A synthetic route is presented for the preparation of a silver film in presence of UV-radiation. Methoxy polyethylene glycol, a water-soluble polymer, was used as the reducing agent of the silver ions in the presence of an ultraviolet source to produce silver nanoparticles. During solution stirring, a centrifugal force was generated at the center of the solution. At this point on the surface of the solution, the nanoparticles coalesced to form a self-assembly of small subunits that ultimately develops into a film-like network.  相似文献   

16.
A novel method for preparing fine magnetite nanoparticles without using any additives and organic solvents has been developed. In this method, a sequential precipitates formation method, ferrous and ferric hydroxides are not coprecipitated but sequentially formed in an alkaline solution, and then the resulting suspension is subjected to a hydrothermal treatment. The obtained magnetite nanoparticles were characterised through scanning electron microscopy observation and X-ray diffraction analysis, and the particle size and magnetic properties were measured with a dynamic light scattering particle size analyser and a superconducting quantum interference device magnetometer, respectively. In order to prepare fine magnetite nanoparticles with a uniform size, both the formation sequence of ferrous and ferric hydroxide precipitates and the supersaturation of ferric hydroxide in the solution were essential. The ferromagnetic magnetite nanoparticles with a median size 8.5?nm were relatively easily obtained in the formation process in which a ferric sulphate solution was rapidly poured into a suspension of ferrous hydroxide particles prepared beforehand using ferric chloride and sodium hydroxide, whereas the median size of magnetite nanoparticles prepared via conventional coprecipitation route was 38.6?nm.  相似文献   

17.
In the present work, Egyptian ilmenite nanoparticles (FeTiO3 NPs) were obtained with the average diameters of 20?nm by a direct solid-phase milling process and synthesized amorphous silica powder grains were processed to prepare a novel fabricated Egyptian nanoilmenite/amorphous silica composite (ENI/AS) particles. Flaky-like nature of ENI/AS and the spherical shape of Zn-dust particles were emphasized by scanning electron microscopic (SEM) micrographs. The nano features of ENI/AS particles were confirmed by transmission electron microscope (TEM) investigation. Various alkyd-based cold galvanizing coating formulations were modified using different uniformly dispersing amounts of the processed ENI/AS particles as a modifier to form some nanocomposite coatings. The electrochemical behavior of nanocomposite modified coated steel films in oil-wells formation water solution have been studied by both potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The mechanical properties of the coated films were studied through some coating tests as cross-cut adhesion, bend and impact to assert their application efficiency. Scanning electron microscope (SEM) technique was utilized to survey the protective film formed on the carbon steel surface by these modified coatings in formation water solution. The results of this study reinforced remarkable corrosion protection properties of ENI/AS modified cold galvanizing coating.  相似文献   

18.
We explored a very interesting gold nanoparticle system-pegylated gold in colloidal solution-and analyzed its uptake by mice colorectal adenocarcinoma CT26 tumor cells and the impact on the cell's response to x-ray irradiation. We found that exposure to polyethylene glycol (PEG) modified ('pegylated') 4.7 ± 2.6?nm gold nanoparticles synthesized by a novel synchrotron-based method enhances the response of CT26 cells to x-ray irradiation. Transmission electron microscopy (TEM) and confocal microscopy revealed that substantial amounts of such nanoparticles are taken up and absorbed by the cells and this conclusion is supported by quantitative induced coupled plasma (ICP) results. Standard tests indicated that the internalized particles are highly biocompatible but strongly enhance the cell damage induced by x-ray irradiation. Synchrotron radiation Fourier transform infrared (SR-FTIR) spectromicroscopy analyzed the chemical aspects of this phenomenon: the appearance of C = O stretching bond spectral features could be used as a marker for cell damage and confirmed the enhancement of the radiation-induced toxicity for cells.  相似文献   

19.
Magnetite magnetic nanoparticles are prepared using olive leaf extract as a green reducing and stabilizing agents. After reaction the product is heated up to get rid of the organic compounds and get pure magnetite nanoparticles. Differential scanning calorimetry is used to study the phase transformation as a function of heating temperature. Scanning electron microscope and high resolution transmission electron microscope show spherical and crystallized nanoparticles with a size of 5 nm. X-ray diffraction and Raman and x-ray photoelectron spectroscopy indicate the formation of Magnetite phase with high cristallinity and purity. The synthesized Magnetite nanoparticles are semiconductors with gap energy around 2 eV. Observed by transmission electron microscope graphite rods with stacked carbon disks are decorated with the prepared nanoparticles and show enhanced photocurrent. The vibrating sample magnetometer measurements indicate that the prepared Magnetite nanoparticles have superparamagnetic behavior. These results are very promising for clinical and water splitting applications.  相似文献   

20.
A novel biodegradable polymer–ceramic nanocomposite which consisted of gelatin (Gel), chitosan (CS), and calcium phosphate (CaP) nanoparticles was prepared based on in situ preparation method. The fabricated biocomposites were characterized by FTIR, X-ray diffraction (XRD), transmission electron microscopy (TEM) as well as scanning electron microscope with X-ray elemental analysis (SEM-EDX). The characterization results confirmed that the crystalline calcium phosphate nanoparticles were mineralized in polymeric matrix and the interaction between Ca2+ in calcium phosphate and functional groups in polymers molecular chains was formed. XRD result showed that in addition to hydroxyapatite (HA), Brushite (BR) and tricalcium phosphate (β-TCP) particles also were formed due to lack of complete penetration of the basic solution into the polymeric matrix. However, SEM image indicated that the polymeric matrix has the controlling role in the particle size of calcium phosphate. The size of particles in three component composites was about 100 nm while in two component composites proved to be more in μm size. TEM observation supported SEM results and showed that the three component composites have calcium phosphate nanoparticles. The elastic modulus and compressive strength of the composites were also improved by the employment of gelatin and chitosan together, which can make them more beneficial for surgical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号