首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While certain spectral reflectance indices have been shown to be sensitive to the expression of a range of performance-related traits in crops, knowledge of the potentially confounding effects associated with plant anatomy could help improve their application in phenotyping. Morphological traits (leaf and spike wax content, leaf and spike orientation, and awns on spikes) were studied in 20 contrasting advanced wheat lines to determine their influence on spectral indices and in their association with grain yield under well-irrigated conditions. Canopy reflectance (400–1100 nm) was determined at heading and grain filling during two growing seasons and three vegetation indices (VIs; red normalized difference vegetation index (RNDVI), green normalized difference vegetation index (GNDVI), and simple ratio (SR)), and five water indices (WIs; one simple WI and four normalized WIs (NWI-1, NWI-2, NWI-3, and NWI-4)) were calculated. The major reflectance fluctuations caused by the differences in leaf and spike morphology mainly occurred in the infrared region (700–1100 nm) and little variation in the visible region (400–700 nm). The NWI-3 ((R970R880)/(R970 + R880)) consistently showed a stronger association with yield than the RNDVI by using uncorrected canopy reflectance (original raw data) and data adjusted by scattering and smoothing. When canopy reflectance was corrected by a scattering method, the NWI-3 and a modified RNDVI with 958 nm showed the strongest correlations with grain yield by grouping lines for waxy leaves and spikes, curved leaves, and erect and awnless spikes. The results showed that the relationship between the spectral indices and grain yield can be improved (higher correlations) by correcting canopy reflectance for confounding effects associated with differences in leaf and spike morphology.  相似文献   

2.
ABSTRACT

Due to the signal-to-noise ratio (SNR) of sensors, as well as atmospheric absorption and illumination conditions, etc., hyperspectral data at some bands are of poor quality. Data restoration for noisy bands is important for many remote sensing applications. In this paper, we present a novel data-driven Principal Component Analysis (PCA) approach for restoring leaf reflectance spectra at noisy bands using the spectra at effective bands. The technique decomposes the leaf reflectance spectra into their principal components (PCs), selects the leading PCs that describe the most variance in the data, and restores the data from these components. First, the first 10 PCs were determined from a training dataset simulated by the leaf optical properties model (PROSPECT-5) that contained 99.998% of the total information in the 3636 training samples. Then, the performance of the PCA method for restoration of the reflectance at noisy bands was investigated using the ANGERS leaf optical properties dataset; the results showed the spectral root mean squared error (RMSE) is in the range 6.46 × 10?4 to 6.44 × 10?2, which is about 3 ? 34 times more accurate than the stepwise regression method and partial least squares method (PLSR) for the ANGERS dataset. The results also showed that if the noisy bands are far away from the effective bands, the accuracy of the restored leaf reflectance spectra will decrease. Thirdly, the reliability of the restored reflectance spectra for retrieving leaf biochemical contents was assessed using the ANGERS dataset and leaf optical properties dataset established by the Beijing Academy of Agriculture and Forestry Sciences (BAAFS). Three water-sensitive vegetation indices ? normalized difference water index (NDWI), normalized difference infrared index (NDII) and Datt water index (DWI), derived from the restored leaf spectra ? were employed to retrieve the equivalent water thickness (EWT). The results showed that the leaf water content can be accurately retrieved from the restored leaf reflectance spectra. In addition, the PCA method to restore vegetation spectral reflectance can be applied on canopy level as well. The results showed that the spectral root mean squared error (RMSE) is in the range 8.22 × 10?4 to 1.87 × 10?2. The performance of the restored canopy spectra was investigated according to the results of retrieving canopy equivalent water thickness (CEWT) using the five spectral indices NDWI, NDWI1370, NDWI1890, NDII and DWI. The results indicated that the restored canopy spectra can be used for retrieving CEWT reliably and improve the accuracy of retrieval compared to the results using original canopy reflectance spectra.  相似文献   

3.
Moisture dictates vegetation susceptibility to fire ignition and propagation. Various spectral indices have been proposed for the estimation of equivalent water thickness (EWT), which is defined as the mass of liquid water per unit of leaf surface. However, fire models use live fuel moisture content (LFMC) as a measure of vegetation moisture. LFMC is defined as the ratio of the mass of the liquid water in a leaf over the mass of dry matter, and traditional spectral indices are not as effective as with EWT in capturing LFMC variability. The aim of this research was to explore the potential of the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra and Aqua satellites in retrieving LFMC from top of the canopy reflectance, and to develop a new spectral index sensitive to this parameter. All the analyses were based on synthetic canopy spectra constructed by coupling the PROSPECT (leaf optical properties model) and SAIL (Scattering by Arbitrarily Inclined Leaves) radiative transfer models. Simulated top of the canopy spectra were then convolved to MODIS ‘land’ channels 1–7 spectral response functions. All band pairs were evaluated to determine the subspace of MODIS measurements where the separability of points based on their value of LFMC was the highest. This led to the identification of isolines of LFMC in the plane defined by MODIS reflectance measurements in channels 2 and 5; the isolines are straight and parallel, and ordered from lower to higher values of LFMC. This observation allowed the construction of a novel spectral index that is directly related to LFMC – the perpendicular moisture index (PMI). This index measures the distance of a point in the plane spanned by reflectance measurements in MODIS channels 2 and 5 from a reference line, that of completely dry vegetation. Validation against simulated data showed that PMI exhibits a linear relationship with LFMC. When the vegetation cover is dense, the LFMC explains most of the variability in the PMI (R2 = 0.70 when LAI > 2; R2 = 0.87 when LAI > 4). When the LAI is lower, the contribution of soil background to the measured reflectance increases, and the index underestimates LFMC. The PMI was also validated against the LOPEX93 (Leaf Optical Properties Experiment 1993) data set of leaf optical and biophysical measurements, scaled to canopy reflectance with SAIL, showing acceptable results (R2 = 0.56 when LAI > 2; R2 = 0.63 when LAI > 4).  相似文献   

4.
Vegetation water content is an important parameter for retrieval of soil moisture from microwave data and for other remote sensing applications. Because liquid water absorbs in the shortwave infrared, the normalized difference infrared index (NDII), calculated from Landsat 5 Thematic Mapper band 4 (0.76-0.90 μm wavelength) and band 5 (1.55-1.65 μm wavelength), can be used to determine canopy equivalent water thickness (EWT), which is defined as the water volume per leaf area times the leaf area index (LAI). Alternatively, average canopy EWT can be determined using a landcover classification, because different vegetation types have different average LAI at the peak of the growing season. The primary contribution of this study for the Soil Moisture Experiment 2004 was to sample vegetation for the Arizona and Sonora study areas. Vegetation was sampled to achieve a range of canopy EWT; LAI was measured using a plant canopy analyzer and digital hemispherical (fisheye) photographs. NDII was linearly related to measured canopy EWT with an R2 of 0.601. Landcover of the Arizona, USA, and Sonora, Mexico, study areas were classified with an overall accuracy of 70% using a rule-based decision tree using three dates of Landsat 5 Thematic Mapper imagery and digital elevation data. There was a large range of NDII per landcover class at the peak of the growing season, indicating that canopy EWT should be estimated directly using NDII or other shortwave-infrared vegetation indices. However, landcover classifications will still be necessary to obtain total vegetation water content from canopy EWT and other data, because considerable liquid water is contained in the non-foliar components of vegetation.  相似文献   

5.
6.
Efficient and accurate detection of the temporal dynamics and spatial variations of leaf dry matter content would help monitor key properties and processes in vegetation and the wider ecosystem. However, leaf water content strongly absorbs at shortwave infrared wavelengths, reducing the signal from dry matter. The major objective of this study was to examine relationship between spectral reflectance of fresh leaves and the ratio of leaf dry mass to leaf area, across a wide range of species at the leaf scale. A narrow-band, normalized index combining two distinct wavebands centred at 1649 and 1722 nm achieved the highest overall performance and discriminatory power compared to either single band or first derivatives. The normalized index was evaluated using the PROSPECT (leaf optical properties spectra) simulated reflectance spectra and field measurements from the Leaf Optical Properties Experiment (LOPEX) data set. Both evaluations show that leaf dry matter contents were retrievable with R 2 of 0.845 and 0.681 and regression slopes of 0.903 and 0.886. This study suggests that spectral reflectance measurements hold promise for the assessment of dry matter content for green leaves. Further investigation needs to be conducted to evaluate the effectiveness of this normalized index at canopy scales.  相似文献   

7.
The common features of spectral reflectance from vegetation foliage upon leaf dehydration are decreasing water absorption troughs in the near‐infrared (NIR) and short‐wave‐infrared (SWIR). We studied which leaf water index in the NIR and SWIR is most suitable for the assessment of leaf water content and the detection of leaf dehydration from the laboratory standpoint. We also examined the influence of the thickness of leaves upon leaf water indices. All leaf water content indices examined exhibited basic correlations with the relative water content (RWC) of leaves, while the R 1300/R 1450 leaf water index also demonstrated a high signal strength and low variability (R 2>0.94). All examined leaf reflectance ratios could also be correlated with leaf thickness. The thickness of leaves, however, was not independent of leaf RWC but appeared to decrease substantially as a result of leaf dehydration.  相似文献   

8.
There are two main parameters describing the amount of water in vegetation: the gravimetric water content (GWC) and the equivalent water thickness (EWT). In this study, we investigated the applicability of hyperspectral water-sensitive indices from canopy spectra for estimating canopy EWT (CEWT) and GWC. First, the spectral reflectance’s response to different levels of canopy water content was analysed and a noticeable increase in the slope of the near-infrared (NIR) shoulder of the canopy spectrum was observed. Next, the correlation between the CEWT and various hyperspectral water-sensitive indices was investigated. It was found that all of the indices could retrieve the CEWT of winter wheat well, with the coefficients of determination (R2) all being higher than 0.80. Finally, the retrieval performance of these indices for canopy GWC was evaluated and no significant correlation was observed between canopy GWC and the water-sensitive indices except for the spectral ratio index in the NIR shoulder region (NSRI). These results showed that the traditional water-sensitive vegetation indices are more sensitive to CEWT than to GWC, especially when the LAI is not highly correlated with the GWC, and that the NSRI is a potential vegetation index for use in the retrieval of GWC.  相似文献   

9.
Vegetation indices are frequently used for the non-destructive assessment of leaf chemistry, especially chlorophyll content. However, most vegetation indices were developed based on the statistical relationship between the spectral reflectance of the adaxial leaf surface and chlorophyll content, even though abaxial leaf surfaces may influence reflectance spectra because of canopy structure or the inclination of leaves. In the present study, reflectance spectra from both adaxial and abaxial leaf surfaces of Populus alba and Ulmus pumila var. pendula were measured. The results showed that structural differences of the two leaf surfaces may result in differences in reflectance and hyperspectral vegetation indices. Among 30 vegetation indices tested, R672/(R550 × R708) had the smallest difference (4.66% for P. alba, 2.30% for U. pumila var. pendula) between the two blade surfaces of the same leaf in both species. However, linear regression analysis showed that several vegetation indices (R850 ? R710)/(R850 ? R680), VOG2, D730, and D740, had high coefficients of determination (R2 > 0.8) and varied little between the two leaf surfaces of the plants we sampled. This demonstrated that these four vegetation indices had relatively stable accuracy for estimating leaf chlorophyll content. The coefficients of determination (R2) for the calibration of P. alba leaves were 0.92, 0.98, 0.93, and 0.95 on the adaxial surfaces, and 0.88, 0.87, 0.88, and 0.92 on the abaxial surfaces. The coefficients of determination (R2) for the calibration of U. pumila var. pendula leaves were 0.85, 0.91, 0.86, and 0.90 on adaxial surface, and 0.80, 0.80, 0.84, and 0.88 on abaxial surface. These four vegetation indices were readily available and were little influenced by the differences in the two leaf surfaces during the estimation of leaf chlorophyll content.  相似文献   

10.
This study investigates the applicability of empirical and radiative transfer models to estimate water content at leaf and landscape level. The main goal is to evaluate and compare the accuracy of these two approaches for estimating leaf water content by means of laboratory reflectance/transmittance measurements and for mapping leaf and canopy water content by using airborne Multispectral Infrared and Visible Imaging Spectrometer (MIVIS) data acquired over intensive poplar plantations (Ticino, Italy).At leaf level, we tested the performance of different spectral indices to estimate leaf equivalent water thickness (EWT) and leaf gravimetric water content (GWC) by using inverse ordinary least squares (OLS) regression, and reduced major axis (RMA) regression. The analysis showed that leaf reflectance is related to changes in EWT rather than GWC, with best results obtained by using RMA regression by exploiting the spectral index related to the continuum removed area of the 1200 nm water absorption feature with an explained variance of 61% and prediction error of 6.6%. Moreover, we inverted the PROSPECT leaf radiative transfer model to estimate leaf EWT and GWC and compared the results with those obtained by means of empirical models. The inversion of this model showed that leaf EWT can be successfully estimated with no prior information with mean relative errors of 14% and determination coefficient of 0.65. Inversion of the PROSPECT model showed some difficulties in the simultaneous estimation of leaf EWT and dry matter content, which led to large errors in GWC estimation.At landscape level with MIVIS data, we tested the performance of different spectral indices to estimate canopy water per unit ground area (EWTcanopy). We found a relative error of 20% using a continuum removed spectral index around 1200 nm. Furthermore, we used a model simulation to evaluate the possibility of applying empirical models based on appositely developed MIVIS double ratios to estimate mean leaf EWT at landscape level (). It is shown that combined indices (double ratios) yielded significant results in estimating leaf EWT at landscape level by using MIVIS data (with errors around 2.6%), indicating their potential in reducing the effects of LAI on the recorded signal. The accuracy of the empirical estimation of EWTcanopy and was finally compared with that obtained from inversion of the PROSPECT + SAILH canopy reflectance model to evaluate the potential of both methods for practical applications. A relative error of 27% was found for EWTcanopy and an overestimation of leaf with relative errors around 19%.Results arising from this remote sensing application support the robustness of hyperspectral regression indices for estimating water content at both leaf and landscape level, with lower relative errors compared to those obtained from inversion of leaf and 1D canopy radiative transfer models.  相似文献   

11.
Fresh leaf spectral reflectance is primarily influenced by leaf water content and structural aspects such as the inter-cellular spaces within the spongy mesophyll, which also interfere with the estimation of the leaf nitrogen content. It is therefore essential to identify spectral bands that are least affected by the above perturbing factors for improving leaf nitrogen estimation for fresh leaves across any landscape. Wavelengths selection plays a vital role in identifying the best spectral features for assessing leaf nitrogen concentration from hyperspectral data of dry and fresh leaves. The primary objective of this study was to determine typical optimal bands for leaf nitrogen estimation from spectra (400–2500 nm) of whole fresh and dry leaves for the same specimens of Eucalyptus grandis. This was achieved via the use of competitive adaptive re-weighted sampling (CARS), and Monte Carlo cross-validation-competitive adaptive re-weighted sampling (MCCV-CARS) band selection approaches. Bands selected (931 nm, 1003 nm, 1027 nm, 1036 nm, 1177 nm, and 1180 nm) via the MCCV-CARS approach yielded the highest estimation accuracy for both fresh predicted coefficient of determination (R2cal) = 0.82 and predicted root mean square error (RMSEP) = 0.14) and dry leaves (R2P = 0.88 and RMSEP = 0.13) when compared to CARS (2044 nm, 2107 nm, and 2188 nm) only. The identified spectral features could be relevant for assessing leaf nitrogen concentration for different seasons, for example, wet to dry season.  相似文献   

12.
The maximum carboxylation rate (Vcmax) is a key photosynthetic parameter that is determined by the leaf biochemistry and environmental conditions. Numerous studies have shown that plant biochemical, physiological and structural parameters can be estimated from reflectance spectra. Therefore, it is reasonable to assume that Vcmax can be spectrally determined. Here, we investigate the potential of leaf reflectance spectra for retrieving the maximum carboxylation rate of leaves. Measurements of leaf reflectance, carbon dioxide (CO2) response curves, leaf chlorophyll-ab (chl-ab) etc., were made on 80 crop, shrub and tree leaves. Then, the leaf Vcmax,25 was linked to leaf biochemistry and spectral reflectance. A reliable relationship, with a coefficient of determination (R2) value of 0.75, was found between the leaf chl-ab content and Vcmax,25. The leaf Vcmax,25 values were also significantly correlated with chl-ab-sensitive spectral indices with the highest R2 value that was found being 0.83 for the ratio spectral index (RSI) using reflectances at 1089 nm and 695 nm. Finally, multiple stepwise regression (MSR) and a partial least-squares regression (PLSR) modelling approach were used to estimate Vcmax,25 from leaf reflectances. The results confirmed that Vcmax,25 can be reliably estimated from leaf reflectance spectra and give an R2 value >0.80. These findings show that leaf chl-ab can be used as a proxy for leaf Vcmax,25 and that leaf Vcmax,25 can be spectrally determined using leaf reflectance data.  相似文献   

13.
The focus of our research is to seek spectral signatures that indicate the impact and content of heavy metals in the leaves and canopies of living plants during the process of phytoremediation. Potted plants of barley (Hordeum vulgare) were grown for 5–6 weeks before being subjected to metal treatments of Zn and Cd. Diffuse reflectance spectra (350–2500 nm) of the plant canopies were collected daily using a portable spectroradiometer throughout the treatment period. Foliar structural changes of Zn‐treated plants included a decrease in intercellular space, palisade and epidermal cell size while Cd‐treated plants displayed fewer structural changes in leaf. Spectral analysis revealed that the band ratios at 1110 nm to that at 810 nm might be used as an indicator of the accumulation of certain metals in plant shoots. Normalized Difference Vegetation Index (NDVI) and leaf‐water‐content indices examined as part of our spectral analysis were not able to distinguish plants treated with different metals. Our ratio index R1110/R810, on the other hand, correlates closely with the magnitude of leaf structural changes. This study suggests that the infrared reflectance spectrum (800–1300 nm) of plant canopy might provide a non‐intrusive monitoring method for the physiological status of plants grown on heavy metal contaminated soil.  相似文献   

14.
Estimating live fuel moisture content from remotely sensed reflectance   总被引:3,自引:0,他引:3  
Fuel moisture content (FMC) is used in forest fire danger models to characterise the moisture status of the foliage. FMC expresses the amount of water in a leaf relative to the amount of dry matter and differs from measures of leaf water content which express the amount of water in a leaf relative to its area. FMC is related to both leaf water content and leaf dry matter content, and the relationships between FMC and remotely sensed reflectance will therefore be affected by variation in both leaf biophysical properties. This paper uses spectral reflectance data from the Leaf Optical Properties EXperiment (LOPEX) and modelled data from the Prospect leaf reflectance model to examine the relationships between FMC, leaf equivalent water thickness (EWT) and a range of spectral vegetation indices (VI) designed to estimate leaf and canopy water content. Significant correlations were found between FMC and all of the selected vegetation indices for both modelled and measured data, but statistically stronger relationships were found with leaf EWT; overall, the water index (WI) was found to be most strongly correlated with FMC. The accuracy of FMC estimation was very low when the global range of FMC was examined, but for a restricted range of 0-100%, FMC was estimated with a root-mean-square error (RMSE) of 15% in the model simulations and 51% with the measured data. The paper shows that the estimation of live FMC from remotely sensed vegetation indices is likely to be problematic when there is variability in both leaf water content and leaf dry matter content in the target leaves. Estimating FMC from remotely sensed data at the canopy level is likely to be further complicated by spatial and temporal variations in leaf area index (LAI). Further research is required to assess the potential of canopy reflectance model inversion to estimate live fuel moisture content where a priori information on vegetation properties may be used to constrain the inversion process.  相似文献   

15.
The remote sensing of foliar biochemical concentration assumes that leaf biochemical absorption features will be manifest in canopy reflectance. This is a reasonable assumption providing the effect of a given change in foliar biochemical concentration has a similar effect on both leaf and canopy reflectance. A comparison between canopy and leaf reflectance was made to determine if canopy effects (composite of leaf area index, biomass, structure, multiple scattering and shadow) could alter the leaf biochemical information in canopy reflectance spectra. Differences in leaf biochemical concentrations and leaf biomass were induced by the application of fertilisers to large plots of slash pine (Pinus elliottii var elliottii) in Florida, U.S.A. The reflectance of plot canopies was measured using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The reflectance of samples of leaves drawn from each plot were measured using a laboratory spectrometer. The differences between airborne and laboratory reflectance ratios (fertilised/control spectra) were used to isolate the effects of the canopy in AVIRIS reflectance spectra. From this study it was concluded that the canopy influenced leaf reflectance substantially at wavelengths beyond the water absorption feature at 1400nrn and leaf biochemical information was transmitted virtually unchanged from the leaf to the canopy in near-infrared wavelengths.  相似文献   

16.
Remotely sensed spectral reflectance data have provided avenues for large-scale non-destructive estimation of temporal and spatial variations of physiological processes in plants. This study established the potential for tracking (chlorophyll) chl-a:b ratio in Tamarix ramosissima based on -leaf-scale photochemical reflectance index (PRI) at Fukang Station of Desert Ecology in the hinterland of the Junggar Basin, Xinjiang, northwest China. Leaves were sampled on a monthly basis over a 3-year growing period. T. ramosissima tolerance to the fragile arid conditions revealed higher coefficient of determination (R2 > 0.6) between chl-a:b ratio and N content at each light condition. This implied a higher potential for irradiance acclimation through plasticity in photosynthetic apparatus, and hence an important attribute for colonizing wider desert ecological range. PRI was negatively correlated to chl-a:b ratio regardless of season but was more sensitive to changes in light condition. The modified PRI (PRImod, R510R570 nm) performed better than the original PRI (PRI, R531R570 nm) with R2 improvement in all data sets of this species. These results implied that seasonality and leaf age, within canopy resource variation and the individual species must be considered when applying PRImod to estimate chl-a:b ratio. Application of empirical indices avails a non-destructive timely leaf-level, species and site-specific avenue of detecting vegetation status in arid ecosystems. Remote estimation of chl-a:b ratio obtained at leaf scale in this study could be scaled to ecosystem and global scale by effective estimation of spatial distribution and seasonal variation using other pigment-related vegetation index such as the normalized difference vegetation index, or combination of PRI and the water band index.  相似文献   

17.
As a first step in developing classification procedures for remotely acquired hyperspectral mapping of mangrove canopies, we conducted a laboratory study of mangrove leaf spectral reflectance at a study site on the Caribbean coast of Panama, where the mangrove forest canopy is dominated by Avicennia germinans, Laguncularia racemosa, and Rhizophora mangle. Using a high‐resolution spectrometer, we measured the reflectance of leaves collected from replicate trees of three mangrove species growing in productive and physiologically stressful habitats. The reflectance data were analysed in the following ways. First, a one‐way ANOVA was performed to identify bands that exhibited significant differences (P value<0.01) in the mean reflectance across tree species. The selected bands then formed the basis for a linear discriminant analysis (LDA) that classified the three types of mangrove leaves. The contribution of each narrow band to the classification was assessed by the absolute value of standardised coefficients associated with each discriminant function. Finally, to investigate the capability of hyperspectral data to diagnose the stress condition across the three mangrove species, four narrow band ratios (R 695/R 420, R 605/R 760, R 695/R 760, and R 710/R 760 where R 695 represents reflectance at wavelength of 695nm, and so on) were calculated and compared between stressed and non‐stressed tree leaves using ANOVA.

Results indicate a good discrimination was achieved with an average kappa value of 0.9. Wavebands at 780, 790, 800, 1480, 1530, and 1550 nm were identified as the most useful bands for mangrove species classification. At least one of the four reflectance ratio indices proved useful in detecting stress associated with any of the three mangrove species. Overall, hyperspectral data appear to have great potential for discriminating mangrove canopies of differing species composition and for detecting stress in mangrove vegetation.  相似文献   

18.
Statistical and radiative-transfer physically based studies have previously demonstrated the relationship between leaf water content and leaf-level reflectance in the near-infrared spectral region. The successful scaling up of such methods to the canopy level requires modeling the effect of canopy structure and viewing geometry on reflectance bands and optical indices used for estimation of water content, such as normalized difference water index (NDWI), simple ratio water index (SRWI) and plant water index (PWI). This study conducts a radiative transfer simulation, linking leaf and canopy models, to study the effects of leaf structure, dry matter content, leaf area index (LAI), and the viewing geometry, on the estimation of leaf equivalent water thickness from canopy-level reflectance. The applicability of radiative transfer model inversion methods to MODIS is studied, investigating its spectral capability for water content estimation. A modeling study is conducted, simulating leaf and canopy MODIS-equivalent synthetic spectra with random input variables to test different inversion assumptions. A field sampling campaign to assess the investigated simulation methods was undertaken for analysis of leaf water content from leaf samples in 10 study sites of chaparral vegetation in California, USA, between March and September 2000. MODIS reflectance data were processed from the same period for equivalent water thickness estimation by model inversion linking the PROSPECT leaf model and SAILH canopy reflectance model. MODIS reflectance data, viewing geometry values, and LAI were used as inputs in the model inversion for estimation of leaf equivalent water thickness, dry matter, and leaf structure. Results showed good correlation between the time series of MODIS-estimated equivalent water thickness and ground measured leaf fuel moisture (LFM) content (r2=0.7), demonstrating that these inversion methods could potentially be used for global monitoring of leaf water content in vegetation.  相似文献   

19.
Several methods for extracting the chlorophyll sensitive red‐edge position (REP) from hyperspectral data are reported in literature. This study is a continuation of a recent paper published as ‘A new technique for extracting the red edge position from hyperspectral data: the linear extrapolation method’. The method was validated experimentally for estimation of foliar nitrogen concentrations of rye, maize and mixed grass/herb. The objective of this study was to test the utility of the linear extrapolation method under different conditions including variable canopy biophysical parameters, solar zenith angle, sensor noise and spectral bandwidth. REPs were extracted from synthetic canopy spectra that were simulated using properties optique spectrales des feuilles (PROSPECT) and scattering by arbitrarily inclined leaves (SAILH) radiative transfer models. REPs extracted by the linear extrapolation method involving wavebands at 680, 694, 724 and 760 nm produced the highest correlation (R 2 = 0.75) with leaf chlorophyll content with minimal effects of leaf and canopy biophysical confounders (leaf area index, leaf inclination distribution and leaf dry matter content) compared to traditional techniques including the linear interpolation, inverted Gaussian modelling and polynomial fitting techniques. In addition, the new technique is insensitive to changes in solar zenith angle. However, the advantage of using the linear extrapolation method compared to the various alternative methods diminishes with increasing sensor noise and decreasing spectral resolution. In summary, the linear extrapolation technique confirms its high potential for leaf chlorophyll estimation. The efficacy of the technique under field conditions needs to be established.  相似文献   

20.
The apparent electrical conductivity (σa) of soil is influenced by a complex combination of soil physical and chemical properties. For this reason, σa is proposed as an indicator of plant stress and potential community structure changes in an alkaline wetland setting. However, assessing soil σa is relatively laborious and difficult to accomplish over large wetland areas. This work examines the feasibility of using the hyperspectral reflectance of the vegetation canopy to characterize the σa of the underlying substrate in a study conducted in a Central California managed wetland. σa determined by electromagnetic (EM) inductance was tested for correlation with in-situ hyperspectral reflectance measurements, focusing on a key waterfowl forage species, swamp timothy (Crypsis schoenoides). Three typical hyperspectral indices, individual narrow-band reflectance, first-derivative reflectance and a narrow-band normalized difference spectral index (NDSI), were developed and related to soil σa using univariate regression models. The coefficient of determination (R 2) was used to determine optimal models for predicting σa, with the highest value of R 2 at 2206 nm for the individual narrow bands (R 2?=?0.56), 462 nm for the first-derivative reflectance (R 2?=?0.59), and 1549 and 2205 nm for the narrow-band NDSI (R 2?=?0.57). The root mean squared error (RMSE) and relative root mean squared error (RRMSE) were computed using leave-one-out cross-validation (LOOCV) for accuracy assessment. The results demonstrate that the three indices tested are valid for estimating σa, with the first-derivative reflectance performing better (RMSE?=?30.3 mS m?1, RRMSE?=?16.1%) than the individual narrow-band reflectance (RMSE?=?32.3 mS m?1, RRMSE?=?17.1%) and the narrow-band NDSI (RMSE?=?31.5 mS m?1, RRMSE?=?16.7%). The results presented in this paper demonstrate the feasibility of linking plant–soil σa interactions using hyperspectral indices based on in-situ spectral measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号