首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We tested the consistency and accuracy of flat-plate spectral measurements (400–1000 nm) of the marine macrophyte Ulva curvata. With sequential addition of Ulva thallus layers, the reflectance progressively increased from 6% to 9% with six thalli in the visible (VIS) and from 5% to 19% with ten thalli in the near infrared (NIR). This progressive increase was simulated by a mathematical calculation based on an Ulva thallus diffuse reflectance weighted by a transmittance power series. Experimental and simulated reflectance differences that were particularly high in the NIR most likely resulted from residual water and layering structure unevenness in the experimental progression. High spectral overlap existed between fouled and non-fouled Ulva mats and the coexistent lagoon mud in the VIS, whereas in the NIR, spectral contrast was retained but substantially dampened by fouling.  相似文献   

2.
Mapping land and aquatic vegetation of coastal areas using remote sensing for better management and conservation has been a long-standing interest in many parts of the world. Due to natural complexity and heterogeneity of vegetation cover, various remote sensing sensors and techniques are utilized for monitoring coastal ecosystems. In this study, two unsupervised and two supervised standard pixel-based classifiers were tested to evaluate the mapping performance of the second-generation airborne NASA Glenn Hyperspectral Imager (HSI2) over the narrow coastal area along the Western Lake Erie’s shoreline. Furthermore, the classification results of HSI2 (using the whole Visible-Near Infrared (VIS+ NIR) hyperspectral dataset, and also the spectral subset of Visible (VIS) spectral bands) were compared to multispectral Pleiades (VIS+ NIR) and Unmanned Aerial Vehicle (UAV) VIS classified images. The goal was to explore how different spectral ranges, and spatial and spectral resolutions impact the unsupervised and supervised classifiers. While the unsupervised classifiers depended more on the spectral range, spectral or spatial resolutions were important for the supervised classifiers. The Support Vector Machine (SVM) was found to perform better than other classification methods for the HSI2 images over all twenty-two study sites with the overall accuracy (OA) ranging from 82.6%–97.5% for VIS, and 81.5%–95.6 % for VIS + NIR. Considerably better performance of the supervised classifiers for the HSI2 VIS data over the Pleiades data (OA = 74.8–83.4%) suggested the importance of spectral resolution over spectral range (VIS vs. VIS+ NIR) for the supervised methods. The unsupervised classifiers exhibited low accuracy for both HSI2 VIS and UAV VIS imagery (OA< 30.0%) while the overall accuracy for the HSI2 VIS+ NIR and Pleiades data ranged from 60.4%–78.4 % and 42.1%–66.4%, respectively, suggesting the importance of spectral range for the unsupervised classifiers.  相似文献   

3.
In this article, the Kuusk–Nilson forest reflectance and transmittance (FRT) model was inverted to retrieve the overstorey and understorey leaf area index (OU-LAI) of forest stands in the Longmenhe forest nature reserve in China. Data from detailed sample sites were collected in 30 forest stands representing the typical vegetation community in the study area. An uncertainty and sensitivity matrix (USM) was used to analyse the sensitivity of the FRT model parameters based on these data. The results indicated that overstorey LAI strongly influenced stand reflectance, whereas understorey LAI had a much lower impact. To predict OU-LAI in forest stands, FRT model inversion is carried out by minimizing a merit function that provides a measure of the difference between the reflectance simulated by the FRT model and the reflectance originating from optimal band selection of Hyperion data. Various combinations of Hyperion bands were tested to evaluate the most effective wavelengths for the inversion of OU-LAI. The best estimates from 17 Hyperion bands (5 VIS, 8 NIR, 4 SWIR) by the FRT model inversion showed an R 2?=?0.41 and RMSE/mean?=?0.21 for overstorey LAI and R 2?=?0.49 and RMSE/mean?=?0.91 for understorey LAI. Advantages and disadvantages of FRT inversion for retrieval OU-LAI combined with Hyperion data are discussed.  相似文献   

4.
A two‐year study was conducted in 2002 and 2003 at the University of Nevada, Las Vegas's center for urban water conservation to assess canopy spectral response of annual ryegrass (Lolium multiflorum Lam.) grown under various combinations of N and irrigation (based on leaching fraction: LF) treatments. Multispectral measurements were acquired using a ground‐based spectroradiometer (200–1100 nm) on a biweekly basis during the growing season (October–May) in 2002 and 2003. Multispectral parameters were correlated with soil–plant parameters and temporal variability was investigated. Results showed that the normalized difference vegetation index (NDVI), stress index (SI), photochemical reflectance index (PRI) and canopy reflectance at 693 nm, were highly correlated with tissue N concentration (TN), tissue moisture content (TM), TN×TM and canopy colour, as influenced by N and LF treatment combinations. Coefficients of determination ranged from 0.50 to 0.79 (P<0.001) based on single‐day correlations and correlations established over the entire growing period in 2002 and in 2003. TN was mainly predicted from wavelengths in the VIS portion of the spectrum, while TM was predicted from wavelengths in the VIS and NIR. Correlations were inconsistent between spectral parameters and physiological parameters throughout the study confirming the problem of temporal variation associated with spectral signatures of turfgrass species. However, spectral reflectance showed significant potential for monitoring turfgrass N and moisture status, and was able to capture temporal variability over the same growing period and from one year to another. The results provide a sound basis for future validation of ground‐based remote sensing for turfgrass management on golf courses.  相似文献   

5.
Needles were collected from ponderosa and Jeffrey pine trees at three sites in the Sierra Nevada, and were assembled into 504 samples and grouped according to five dominant live needle conditions – green, winter fleck, sucking insect damage, scale insect damage, and ozone damage – and a random mixture. Reflectance and transmittance measurements of abaxial and adaxial surfaces were obtained at ca 0.3 nm spectral resolution from 400–800 nm, and binned to simulate Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data. There were no significant differences in optical properties between the two surfaces. Ozone‐damaged needles were collected from Jeffrey pine trees at one site, and exhibited significantly different (family‐wise α = 0.01) reflectance and transmittance signatures – and significantly different signature slopes – at both spectral resolutions, from green and winter fleck needles from the same site. Ozone‐damaged needles had significantly different (family‐wise α = 0.01) abaxial surface reflectance and reflectance slope signatures from all other groups of needles, at both spectral resolutions. In comparison with three chlorophyll reflectance indices, a new red fall index (RFI) provides high classification accuracies for ozone‐damaged and non‐ozone‐damaged pine needles (overall acc. = 94%; κ = 59%). Thus, ozone‐damaged Jeffrey pine needles have a unique spectral signature in relation to dominant needle conditions of ponderosa and Jeffrey pine trees.  相似文献   

6.
The Medium Resolution Imaging Spectrometer (MERIS) sensor, with its good physical design, can provide excellent data for water colour monitoring. However, owing to the shortage of shortwave-infrared (SWIR) bands, the traditional near-infrared (NIR)–SWIR algorithm for atmospheric correction in inland turbid case II waters cannot be extended to the MERIS data directly, which limits its applications. In this study, we developed a modified NIR black pixel method for atmospheric correction of MERIS data in inland turbid case II waters. In the new method, two special NIR bands provided by MERIS data, an oxygen absorption band (O2 A-band, 761 nm) and a water vapour absorption band (vapour A-band, 900 nm), were introduced to keep the assumption of zero water-leaving reflectance valid according to the fact that both atmospheric transmittance and water-leaving reflectance are very small at these two bands. After addressing the aerosol wavelength dependence for the cases of single- and multiple-scattering conditions, we further validated the new method in two case lakes (Lake Dianchi in China and Lake Kasumigaura in Japan) by comparing the results with in situ measurements and other atmospheric correction algorithms, including Self-Contained Atmospheric Parameters Estimation for MERIS data (SCAPE-M) and the Basic ERS (European Remote Sensing Satellite) & ENVISAT (Environmental Satellite) (A)ATSR ((Advanced) Along-Track Scanning Radiometer) and MERIS (BEAM) processor. We found that the proposed method had acceptable accuracy in the bands within 560–754 nm (MERIS bands 5–10) (average absolute deviation (AAD) = 0.0081, average deviation (AD) = 0.0074), which are commonly used in the estimation models of chlorophyll-a (chl-a) concentrations. In addition, the performance of the new method was superior to that of the BEAM processor and only slightly worse than that of SCAPE-M in these bands. Considering its acceptable accuracy and simplicity both in principle and at implementation compared with the SCAPE-M method, the new method provides an option for atmospheric correction of MERIS data in inland turbid case II waters with applications aiming for chl-a estimation.  相似文献   

7.
The performance of the near-infrared (NIR) and short-wave infrared (SWIR) combined atmospheric correction algorithm (NIR-SWIR) for Moderate Resolution Imaging Spectroradiometer (MODIS)-Aqua over the Eastern China Seas (ECS) was evaluated. The in situ data set for evaluation in this study was collected during 2005 and 2012 through eight cruises in the ECS, wherein 49 in situ observation points were successfully matched with MODIS-Aqua data. The remote-sensing reflectance derived from MODIS-Aqua data using the NIR-SWIR algorithm and the NIR algorithm were compared to the in situ measurements in the matched-up data set, which included ocean bands (412, 443, 488, 531, 547, 667, and 678 nm) and land bands (469, 555, and 645 nm). The results show that the performance of the NIR-SWIR algorithm has been improved in turbid waters, and the effect at the short-wave bands (blue and green bands) is more significant than that at the long-wave bands (red bands). In addition, MODIS-Aqua data at the land bands (469, 555, and 645 nm) show a similar performance to those of nearby ocean bands. However, the lower estimation accuracy is still a remarkable question at bands 412, 645, 667, 678 nm. The results from both the NIR-SWIR and NIR algorithms were applied to the images of MODIS-Aqua in the ECS and they indicate that the extent to which the quality of the derived remote-sensing reflectance using the NIR-SWIR algorithm can be improved shows major differences for different seasons. The minimum area is in summer, and the maximum area in winter. The NIR-SWIR algorithm should be used for the whole of the Bohai Sea in winter.  相似文献   

8.
Abstract

Relationships between radiant surface temperature (T R) and vegetation indices for scenes with equal areas of forest and agricultural land use were studied using a Landsat Thematic Mapper (TM) scene during spring and a NOAA-Advanced Very High Resolution Radiometer (AVHRR) scene during summer. The relationships between TR and the Normalized Difference (ND) index of vegetation for agricultural land use were different from those for forests. At the same T R, the forests had lower near infrared reflectance. This caused the ND of forests to fall below the T R/ND relationships formed by agricultural land use. This difference between forest and agricultural land use did not exist when visible reflectance (VIS) was used as the index of vegetation. When the two land use systems were combined VIS accounted for about 86 per cent of the variance in T R. The slope of the relationships between VIS and T R differed for TM and AVHRR scenes. This was explained by differences in the T R and VIS reflectance of surfaces with near-zero evaporation. These surfaces were predominantly bare soil in the TM scene and senesced vegetation in the AVHRR scene.  相似文献   

9.
暗目标法是目前气溶胶光学厚度遥感反演中应用最为广泛的方法,浓密植被暗像元的识别是暗目标法的基础。针对可见光—近红外影像缺少中红外波段难以有效识别浓密植被暗像元的问题,引入红波段直方图阈值法识别山区可见光—近红外影像的浓密植被暗像元。该方法利用浓密森林像元在可见光波段反射率低的特点,通过搜索红波段直方图的最小峰值自动识别浓密植被暗像元。试验中选取Landsat TM影像前4个波段利用红波段直方图阈值法识别可见光—近红外影像的浓密植被暗像元,并与在中红外波段影像和可见光—近红外影像中广泛应用的两种暗像元识别方法进行对比分析,探讨红波段直方图阈值法的有效性,最后将该方法应用于环境减灾卫星(HJ-1)CCD影像的暗像元识别和气溶胶反演。实验结果表明:红波段直方图阈值法明显优于常用的可见光—近红外影像暗像元识别方法,识别精度接近传统的中红外波段影像识别方法,相似度指数小于2和小于3的暗像元分别为83.12%和93.48%。该方法为山区可见光—近红外影像浓密植被暗像元自动识别提供了一种新的适用方法,识别结果能够满足暗目标法反演气溶胶光学厚度的要求。  相似文献   

10.
Sun  Rui  Zhou  Jing-yu  Yu  Duo 《Multimedia Tools and Applications》2021,80(14):21579-21594

Hardness is one of the most important quality characteristics, which has an important influence on the processing and product quality of figs. A rapid non-destructive detection method for the hardness of figs was proposed based on visible/near infrared (VIS/NIR) spectroscopy technology. This study attempts to optimize the construction of a fig hardness model and predict the accuracy of thereof. An NIR spectrometer was used to collect the diffuse reflectance spectrum data in the wavelength range of 950–1700 nm, while the hardness index was measured using texture analyzer. Random forest (RF) and partial least square (PLS) methods were used to model the spectral data and hardness, respectively, and a better algorithm for the model construction was obtained. The RF model performed better in the characteristic band (1150.83–1232.43 nm), with correlation coefficient (R2), root mean square error of calibration (RMSEC), and root mean square error of prediction (RMSEP) of 0.76, 67.61, and 83.94 respectively. The PLS model worked well at the full band (R2?=?0.77, RMSEC?=?59.20, RMSEP?=?91.84). However, the prediction time of the PLS was slightly shorter than that of RF model (0.0004 s?<?0.0098 s). The results show that it is feasible to detect the hardness of figs without destroying them by using VIS/NIR diffuse reflectance spectroscopy combined with sample set partitioning based on joint x–y distances (SPXY), RF, and PLS algorithms. This study provides new technical means for fig products enterprises to determine the hardness of figs in the early stages of production rapidly and evaluate the processing quality of fig products, which has a high practical application potential.

  相似文献   

11.
A study has been carried out to assess angular variations in red and near infrared (NIR) reflectance of different features of the Earth's surface in a common overlap area of accumulated four-date Indian Remote Sensing Satellite (IRS-1D) Wide Field Sensor (WiFS) data from the first fortnight of October 2003. An improved dark object subtraction (DOS) method has been used to perform image based atmospheric corrections. Red and NIR reflectance variations of four structurally different classes—dense vegetation (shrub), sparse crop (pearl millet/maize), wasteland and forest with Sun-target-sensor geometry were analysed. A linearly constrained least squares technique was used to estimate red and NIR model coefficients of the linear Ross Thick-Li Sparse (RTLS) semi- empirical Bidirectional Reflectance Distribution Function (BRDF) model and compared with Moderate Resolution Imaging Spectrometer (MODIS) BRDF product coefficients. The relative reflectance difference between two dates as well as anisotropic factors for red and NIR for all classes and dates were also computed. Red and NIR reflectance of the four land cover classes at different locations with different observation geometry were estimated using both WiFS derived and MODIS BRDF product RTLS model coefficients and compared with WiFS observed reflectance. It was found that the mean relative difference in red and NIR reflectances between consecutive dates varied between 4–11% and 6–8%, respectively, while the computed mean anisotropy factors varied between 3–10% in the red and 8–11% in the NIR. A small anisotropy in the Normalized Difference Vegetation Index (NDVI) as a function of the scattering angle was observed for the four land cover classes. This may imply that angular effects in WiFS are relatively small and do not exceed 10–11 % for the land cover classes considered here.  相似文献   

12.
The optical properties of natural waters beyond the visible range, in the near-infrared (NIR, 700-900 nm), have received little attention because they are often assumed to be mostly determined by the large absorption coefficient of pure water, and because of methodological difficulties. It is now growingly admitted that the NIR represents a potential optical source of unambiguous information about suspended sediments in turbid waters, thence the need for better understanding the NIR optical behaviour of such waters. It has recently been proposed (Ruddick et al., Limnology and Oceanography. 51, 1167-1179, 2006) that the variability in the shape of the surface ocean reflectance spectrum in the NIR is negligible in turbid waters. In the present study, we show, based on both in situ and remote sensing data, that the shape of the ocean reflectance spectrum in the NIR does vary in turbid to extremely turbid waters. Space-borne ocean reflectance data were collected using 3 different sensors (SeaWiFS, MODIS/Aqua and MERIS) over the Amazon, Mackenzie and Rio de la Plata turbid river plumes during extremely clear atmospheric conditions so that reliable removal of gas and aerosol effects on reflectance could be achieved. In situ NIR reflectance data were collected in different European estuaries where extremely turbid waters were found. In both data sets, a flattening of the NIR reflectance spectrum with increasing turbidity was observed. The ratio of reflectances at 765 nm and 865 nm, for instance, varied from ca. 2 down to 1 in our in situ data set, while a constant value of 1.61 had been proposed based on theory in a previous study. Radiative transfer calculations were performed using a range of realistic values for the seawater inherent optical properties, to determine the possible causes of variations in the shape of the NIR reflectance spectrum. Based on these simulations, we found that the most significant one was the gradual increase in the contribution of suspended sediments to the color of surface waters, which often leads to the flattening of the reflectance spectrum. Changes in the scattering and absorption properties of particles also contributed to variations in the shape of the NIR surface ocean reflectance spectrum. The impact of such variations on the interpretation of ocean color data is discussed.  相似文献   

13.
Remote sensing offers a feasible means to monitor tree species at a regional level where species distribution and composition is affected by the impacts of global change. Furthermore, the temporal resolution of space-borne multispectral sensors offers the ability to combine phenologically important phases for the optimization of tree species classification. In this study, we determined whether multi-seasonal leaf-level spectral data (winter, spring, summer, and autumn) improved the classification of six evergreen tree species in the subtropical forest region of South Africa when compared to a single season, for hyperspectral data, and reflectance data simulated to the WorldView-2 (WV2) and RapidEye (RE) sensors. Classification accuracies of the test data were assessed using a Partial Least Square Random Forest algorithm. The accuracies were compared between single seasons and multi-season classification and across seasons using analysis of variance and post-hoc Tukey Honest Significant Difference tests. The average overall accuracy (OA) of the leaf-level hyperspectral data ranged from a minimum of 90 ± 3.5% in winter to a maximum of 92 ± 2.7% in summer, outperforming the simulated reflectance data for the WV2 and RE sensors with an average OA of between 8 and 10 percentage points (p < 0.02, Bonferroni corrected). The use of data from multiple seasons increased the average OA and decreased the number of species pair confusions for the simulated multispectral classifications. The producer’s and user’s accuracies of the hyperspectral classification were >82% and showed no significant change using multi-season data. Multiple seasons may therefore be beneficial to multispectral sensors with ≤8 bands, yet remains to be tested at canopy level, for other species and climatic regions.  相似文献   

14.
ABSTRACT

The importance of assessing nitrogen (N) status in cotton is important from economic and environmental standpoints. In this study, visible and near-infrared reflectance (NIR) data were collected at cotton leaf-, canopy- and scene-scales at three levels of N treatments to determine the best spatial scale and growth stage that most effectively indicate N treatment effects. While N fertilization affected relative chlorophyll content, leaf area index (LAI), and ground cover (GC) simultaneously, these factors portrayed different effects on cotton reflectance measured at the three spatial scales. Leaf-scale measurement was mainly affected by chlorophyll content. Canopy-scale reflectance was controlled by chlorophyll content and LAI. Scene-scale reflectance was predominantly controlled by GC and to the least extent by chlorophyll content. In terms of visible reflectance, chlorophyll absorption decreased with decreasing N at all spatial scales. Nitrogen treatment effects were most apparent at 550 and 700 nm at the leaf-scale, 610 and 700 nm at the canopy-scale, and 685–690 nm at the scene-scale (after per cent GC exceeded 64%). Only measurements taken at the scene-scale demonstrated a consistent relationship between N fertilization and NIR (800–1000 nm). This information could be useful in the development of N-sensitive indices.  相似文献   

15.
Laboratory spectra have been used for studying the characteristics of desert varnish in the context of Landsat TM data in order to establish its influence on the reflectance of gossans and their discrimination. Supported by limited chemical analysis, reflectance values from selected rock samples have been processed using statistical methods, and spectral plots produced and visually interpreted. Spectral analysis shows that paucity and Mn/Fe proportion in desert varnish, lightness or darkness of the rock, its mineral composition, and the wavelength under consideration control the effect of desert varnish on Landsat TM data. In general, overall reflectance of rocks is reduced by up to 70% in the VIS parts and about 20% in the SWIR parts of the electromagnetic spectrum due to desert varnish. For acidic rocks this effect seems to be intense, whereas mafic rocks are less influenced. The latter generally display spectral crossovers partly due to Mn/Fe content. In the VIS region absorption bands turn to featureless spectra due to desert varnish, whereas in the SWIR spectra are generally subdued but preserved. This has apparently little consequence on the discrimination of gossans from other rock types on composites constituted by bands from the VIS, IR and SWIR parts.  相似文献   

16.
The spectral characteristics of and the interaction between leaves and light were analysed based on the optical absorption coefficients of foliar water and biochemical components. The equations for calculating the radiative-equivalent water thickness (REWT) of leaves and canopy were presented based on the difference in reflectance at 945 and 975 nm. Because of the direct reflection on leaf surface and the leaf internal scattering, the REWT derived from the Beer–Lambert principle was different from the leaf or canopy equivalent water thickness (EWT). Two independent datasets at canopy or leaf scales were designed to calibrate and validate the relationships between EWT and REWT. The results show that (1) the leaf or canopy REWT can be calculated from the reflectance difference between 945 and 975 nm; (2) the leaf REWT was 3.3 times larger than the EWT with a significant determination coefficient (R 2) of 0.80 for our dataset and 0.86 for the Leaf Optical Properties Experiment (LOPEX'93) dataset; (3) the canopy REWT was 1.4 times larger than the EWT with a significant R 2 of 0.56 for the winter wheat canopy spectral dataset in 2002, and 0.61 for the 2004 dataset. Therefore, the leaf or canopy EWT can be detected by calculating REWT from the difference in reflectance at 945 and 975 nm. Furthermore, because the relationship between REWT and EWT reflected the interaction of light with leaves or canopy, the multiple scattering optical pathlength in the near-infrared (NIR) bands can also be calculated by the ratio of REWT to EWT.  相似文献   

17.
A total of 458 in situ hyperspectral data were collected from 13 urban tree species in the City of Tampa, FL, USA using a spectrometer. The 13 species include 11 broadleaf and two conifer species. Three different techniques, segmented canonical discriminant analysis (CDA), segmented principal component analysis (PCA) and segmented stepwise discriminate analysis (SDA), were applied and compared for dimension reduction and feature extraction. With each of the three techniques, 10 features were extracted or selected from four spectral regions, visible (VIS: 1412–1797 nm), near-infrared (NIR: 707–1352 nm), mid-infrared 1 (MIR1: 1412–1797 nm) and mid-infrared 2 (MIR2: 1942–2400 nm), and used to discriminate the 13 urban tree species with a linear discriminate analysis (LDA) method. The cross-validation results, based on training samples that were used in the feature reduction step, and the results calculated from the test samples were used for evaluating the ability of the in situ hyperspectral data and performance of the segmented CDA, PCA and SDA to identify the 13 tree species. The experimental results indicate that a satisfactory discrimination of the 13 tree species was achieved using the segmented CDA technique (average accuracy (AA) = 96%, overall accuracy (OAA) = 96% and kappa = 0.958 from the cross-validation results; AA = 90%, OAA = 90% and kappa = 0.896 from the test samples) compared to the segmented PCA and SDA techniques, respectively (AA = 76% and 86%, OAA = 78% and 87%, and kappa = 0.763 and 0.857 from the cross-validation results; AA = 79% and 88%, OAA = 80% and 89%, and kappa = 0.782 and 0.879 from the test samples). In this study, the segmented CDA transformation is effective for dimension reduction and feature extraction for species discrimination with a relatively limited number of training samples. It outperformed the segmented PCA and SDA methods and produced the highest accuracies. The NIR and MIR1 regions have greater power for identifying the 13 species compared to the VIS and MIR2 spectral regions. The results indicate that CDA or segmented CDA could be applied broadly in mapping forest cover types, species identification and/or other land use/land cover classification practices with hyperspectral remote sensing data.  相似文献   

18.
It is challenging to use traditional remote sensing techniques to accurately determine the extent and thickness of ice in the Bohai Sea, on account of the presence of sea impurities (i.e. mud, salt bubbles and sand) and shape irregularities. Accordingly, we performed a series of reflectance spectra experiments to empirically link remote measurements of surface reflectance with in situ sea ice thickness measurements in the Bohai Sea. Two years of Thematic Mapper (TM) band 2 and Moderate Resolution Imaging Spectroradiometer (MODIS) band 4 data were used to distinguish between the following sea ice types, using spectral reflectance thresholds of 6.4, 9.6, 10.3 and 12.1%: (a) clean nilas ice (a thin elastic crust of ice up to 10 cm thick that, under pressure, may deform by finger rafting; (b) nilas ice and pancake ice (roughly circular accumulations of frazil ice, usually less than about 3 m in diameter, with raised rims caused by collisions); (c) grey and grey–white ice; and (d) cumulative ice (<30 cm). By establishing a relationship between sea ice type and ice thickness, a novel, practical and low-cost remote sensing technique is introduced to estimate the extent and distribution of sea ice thickness over a large spatial scale. The results obtained by remote sensing are validated with in situ ice shape measurements. The MODIS and TM data are used to distinguish between three ice thickness grades (6–9, 10–20 and 20–30 cm).  相似文献   

19.
The spectral albedo and directional reflectance of snow and sea ice were measured on sea ice of various types, including nilas, grey ice, pancake ice, multi-year pack ice, and land-fast ice in the Ross, Amundsen and Bellingshausen seas during a summer cruise in February through March 2000. Measurements were made using a spectroradiometer that has 512 channels in the visible and near-infrared (VNIR) region in which 16 of the 36 bands of the Moderate Resolution Imaging Spectroradiometer (MODIS) are covered. Directional reflectance is also retrieved from the MODIS radiometrically calibrated data (Level 1B) concurrently acquired from the first National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) satellite, Terra. The locations of the ground ice stations are identified accurately on the MODIS images, and the spectral albedo and directional reflectance values at the 16 VNIR MODIS bands are extracted for those pixel locations. MODIS-derived reflectance is then corrected for the intervening atmosphere whose parameters are retrieved from the MODIS atmospheric profiles product (MOD07_L2) for the same granule. The corresponding spectral albedo and directional reflectance with the same viewing geometry as MODIS are derived from our ground-based spectroradiometer measurements. Because the footprint of the ground spectroradiometer is much smaller than the pixel sizes of MODIS images, the averaged spectral reflectance and albedo in the vicinity of each ice station are simulated for the corresponding MODIS pixel from the ground spectral measurements by weighting over different surface types (various ice types and open water). An accurate determination of ice concentration is important in deriving ground reflectance of a simulated pixel from in situ measurements. The best agreement between the in situ and MODIS measurements was found when the ground had 10/10 ice concentration (discrepancy range 0.2–11.69%, average 4.8%) or was oneice-type dominant (discrepancy range 0.8–16.9%, average 6.2%). The more homogeneous the ground surface and the less variable the ground topography, the more comparable between the in situ and satellite-derived reflectance is expected.  相似文献   

20.
Maps of functional vegetation types are often used to extrapolate in situ measurements of biogeochemical fluxes to make regional-scale or biome-scale estimates. The objective of this study was to determine the optimal spectral-radiometric and temporal features derived from single-date and seasonal time series NOAA AVHRR imagery for classifying three Arctic tundra functional types. A single-date, three-band (VIS, NIR and NDVI) input yielded a map with the highest agreement (86.1% for supervised and 87.8% for unsupervised approaches) compared to a reference map. The map generated with the conventional maximum value NDVI for 10 semi-monthly periods through the growing season was in 82.7% agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号