首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hazardous combination of smoke and pollutant gases, smog, is harmful for health. The harmful smog episodes over London, the Meuse Valley, and Donora are some of the well-known pollution episodes formed due to the mixture of smoky fumes and adverse meteorological conditions. A severe smog episode was observed over Delhi, India, during November 2012, resulting in very low visibility and various respiratory problems. Very high values of pollutants (particulate matter, PM10 as high as 989 µg m?3, PM2.5 as high as 585 µg m?3, and nitrogen dioxide as high as 540 µg m?3) were measured all over Delhi during the smog episode. In the study done, episodes of different nature and intensity are analysed based on remote-sensing data for 3 years (2010–2012): one of regional origin (the Delhi smog episode of 2012) and another of local origin (Diwali). Remote-sensing and in situ data have revealed an insight into the genesis and temporal and spatial variance during these episodes. Extensive use of satellite-derived parameters such as fire maps, the ultra violet aerosol index from the Aura satellite, and aerosol optical depth is made in the present study along with the output trajectories from the Hybrid Single-Particle Lagrangian-Integrated Trajectory model and in situ data. It is observed that during the smog episode all the aerosol optical depth, ultra violet aerosol index, PM2.5, and PM10 values surpassed those of the Diwali period (which in itself is a major dreaded annual air pollution event in the city) by a considerable amount at all stations across Delhi. The parameters used from the remote-sensing data and the ground-based observations at various stations across Delhi are very well in agreement with the intensity of smog episodes. The analysis clearly shows that regional pollution can have a greater contribution towards deteriorating air quality than local pollution under adverse meteorological conditions and is in agreement with other similar studies over Delhi.  相似文献   

2.
The present study was carried out to find the variability of chlorophyll-a (chl-a) concentration, sea surface temperature (SST), and sea surface height anomalies (SSHa) during 2003–2014, covering the Bay of Bengal (BoB) and Arabian Sea (AS) waters. These parameters were linked with El Niño, La Niña, and Indian Ocean Dipole (IOD) years. The observed results during 2003–2014 were evaluated and it was found that the monthly mean value for 12-year data ranged as follows: chl-a (0.11–0.46 mg m?3), SST (27–31 °C), and SSHa (?0.2 to 20 cm). The annual mean range of chl-a for 12-year data was 0.1–0.23 mg m?3, the SST range was 27–28 °C, and the SSHa range was 2.14–13.91 cm. It has been observed that with the SST range of 27–28 °C and the SSHa range of 7–9 cm, the chl-a concentration enhanced to 0.20–0.23 mg m?3. With a higher SST range of 28–29 °C and with a positive SSHa range of 11–14 cm, the chl-a concentration appeared to be low (0.17–0.18 mgm?3). During normal years, SSHa was positive with the >5 to <10 cm range during the months of April–June, which coincided with an increase in SST, >2 to <4 °C. During the normal years, SSHa (>?0.2 to a concentration (>0.3 to <0.5 mg m?3) was noticed during December–February in the BoB and AS. Compared to the BoB chl-a range (<0.4 mg m?3), a high chl-a concentration was observed in AS (>0.4 mg m?3). However, during the phenomenon years, the study area had experienced low chl-a (<0.2 mg m?3), high SST (>5 °C), and more positive SSHa (>10 to <20 cm) during January–March and October–December in AS and BoB. The present study infers that a positive IOD leads to low chl-a concentration (<2 mg m?3) and low primary productivity in AS. El Niño caused the down-welling process, it results in a low chl-a concentration (<1 mg m?3) in BoB and AS. La Niña caused the upwelling process, and it results in a high chl-a concentration (>2.0 mg m?3) in BoB and AS. In the recent past years (2003–2014), the intensity and frequency of El Niño, La Niña, and IOD have been increasing, evidenced with few studies, and have impacts on the Indian Ocean climate. Therefore, the influences of the relative changes of these phenomena on the BoB and AS need to be understood for productivity assessment and ocean state monitoring.  相似文献   

3.
We have examined the 16-year time series of particulate organic carbon (POC) concentration in the surface waters of the North Atlantic derived from SeaWiFS and MODIS-Aqua data. The annual mean POC concentrations are the highest in the northern North Atlantic, reaching 120 mg m?3. Moving south, the mean annual POC concentrations decrease to minimum values of about 30 mg m?3 at around 30° N and increase in the equatorial region to about 70 mg m?3. The seasonal amplitude of POC concentration in the northern North Atlantic region is larger when compared to other regions. The annual mean surface POC concentrations in the entire North Atlantic basin show a statistically significant trend with an average decrease of 0.79 mg m?3 year?1. Regionally averaged 16-year mean POC biomass integrated over the optical depth, euphotic depth, and mixed-layer depth is estimated at about 1.27, 4.34, and 4.59 g m?2, respectively. Even larger biomass of 6.26 g m?2 is estimated if one chooses to use in the calculations the greatest from the daily values of the estimates listed above at each pixel of the satellite data. Comparisons of POC biomass with primary productivity allowed us to assess temporal and spatial patterns of POC losses.  相似文献   

4.
Nature reserve establishment can lead to conflict with some stakeholders. Zoning management is useful to mitigate against the conflict between human development and nature reserves, and a nature reserve can be divided into three zones: the core zone, buffer zone, and experimental zone. So far, how to monitor and evaluate the effectiveness of zoning management in nature reserves is a problem faced by remote sensing scientists and ecologists. Net primary productivity (NPP) is a key indicator which can be used to monitor and evaluate the effectiveness of zoning management in nature reserves. However, to date there has been no research on the effectiveness of zoning management on NPP, and the estimation of NPP in the Tianmu Mountain Nature Reserve also has not been studied. Based on remote sensing data and in situ measurements, the Carnegie–Ames–Stanford approach (CASA) model was used to estimate NPP in the Tianmu Mountain Nature Reserve during the period 1984–2014. We used the observed NPP to verify the simulated NPP, and the results show that the simulated NPP was consistent with the observed NPP (R2 ≥ 0.85, ≤ 0.0002, RMSE = 52.62 g C m?2 year?1, where R2 represents coefficient of determination, p represents statistical significance, and RMSE represents root mean square error). This means that the CASA model is suitable for NPP estimation in the Tianmu Mountain Nature Reserve. The results also indicate that NPP showed an increasing trend during the period 1984–2014, and the increase over the whole period was 6.66%. The total of the annual averaged NPP was 3.07 × 1010 g C year?1, while the annual averaged NPP per unit area was 708 g C m?2 year?1. The largest averaged annual NPP per unit appeared in the core zone (720 g C m?2 year?1), followed by the buffer zone (711 g C m?2 year?1), with the experimental zone having the smallest averaged annual NPP per unit (706 g C m?2 year?1). At the < 0.1 level, there was no region where NPP had decreased significantly in the core zone and buffer zone, and the area of the regions where NPP had decreased significantly in the experimental zone was 8.04 ha. At the p < 0.05 level, there was no area where NPP had decreased significantly in the three zones of the Tianmu Mountain Nature Reserve. The results show that the zoning management on NPP was effective in the Tianmu Mountain Nature Reserve.  相似文献   

5.
In this study, we discuss the employment of microscale schlieren technique to facilitate measurement of inhomogeneities in a micromixer. By mixing dilute aqueous ethanol and water in a T-microchannel, calibration procedures are carried out to obtain the relation between the concentration gradients and grayscale readouts under various incident illuminations, concentrations of aqueous ethanol solution, and knife-edge cutoffs. We find that to broaden measuring range with minimal error, the luminous exitance should be tuned to have a reference background with an average grayscale readout of 121, and dilute aqueous ethanol solution with a mass fraction of 0.05 should be used along a 50 % cutoff. For concentration gradients greater than 6.8 × 10?3 or below ?2.5 × 10?2 μm?1, the calibration curves show great linearity. Correspondingly, the discernable limit of our microscale schlieren system is 2.3 × 10?5 μm?1 for a positive refractive index gradient and ?8.6 × 10?5 μm?1 for a negative refractive index gradient. Once the relation between concentration gradients and grayscale readouts is known, the concentration distribution in a microfluidic can be reconstructed by integrating its microscale schlieren image with appropriate boundary conditions. The results prove that the microscale schlieren technique is able to provide spatially resolved, noninvasive, full-field measurements. Since the microscale schlieren technique is directly linked to the measurement of a refractive index gradient, the present method can be easily extended to other scalar quantifications that are related to the variation of refractive index.  相似文献   

6.
Using Moderate Resolution Imaging Spectroradiometer (MODIS) (Aqua and Terra satellites) and in situ observations, a comparative analysis of two large-scale smoke events caused by the summer wildfires in European Russia (ER) in 2010 and Western Siberia (WS) in 2012 was carried out. In the 5-day periods of the extreme smoke pollution (5–9 August 2010 in ER and 27–31 July 2012 in WS), the number of active fires in the equal territories, confined by the coordinates 47°–65° N, 25°–55° E and 51°–70° N, 71°–104° E, was found to be 4754 for ER and 3823 for WS. With this, the regional mean aerosol optical depths (AODs) were found to be (1.02 ± 0.02) and (1.00 ± 0.04), not much differing for both the events. The regional mean aerosol radiative forcing effects at the top (R1) and the bottom (R2) of the atmosphere over ER/WS according to MODIS observations were estimated to be (?61 ± 1) and (?54 ± 2) W m?2, and (?107 ± 2) and (?96 ± 3) W m?2, respectively. At the same time, the local values of AOD and the local absolute values of R1 and R2 over WS were considerably higher than those over ER. MODIS AOD (L3) data during the wildfires of 2010 were validated by AOD data obtained by the sun-sky photometer CIMEL, operating at the AERONET station Zvenigorod. The rates of radiative heating of the smoky atmosphere over ER and WS were also estimated and compared with the existed temperature anomalies, obtained using National Centers for Environmental Prediction National Center for Atmospheric Research reanalysis data. Optical and microphysical properties of smoke aerosols during the wildfires in ER and WS also revealed some similar characteristics. The aerosols were mostly found in the submicron-size fraction and characterized by very high single-scattering albedos (0.95–0.98). In the dense smoke conditions, the degree of linear polarization at the scattering angle 90° during both the events decreased to negative values ranging between ?0.1 and ?0.15. The optical properties of smoke aerosols were mainly conditioned by unusually narrow particle size distribution.  相似文献   

7.
This article describes a superposable double-concentration-gradient droplet array chip, which allows a variety of concentration combinations of two components to be formed simultaneously. The concentration gradients generated from two layers of the chip could be arbitrarily superimposed by adjusting the center angle between the two bonding layers. With the aqueous phase flow rate of 1.0 μL min?1 and the oil phase flow rate of 30.0 μL min?1, the droplets about 58 μm in diameter were produced, and the coefficients of variation were below 6.0% for single channel and 5.7% for all the channels. Using a dual-32-channel superposable gradient droplet array chip, poly(ethylene glycol) diacrylate (PEGDA) microspheres containing concentration-gradient combinations of rhodamine B and fluorescein were fabricated to demonstrate the capability of PEGDA for encapsulating hydrophilic and hydrophobic substances, as well as the proper concentration-gradient distribution. Furthermore, PEGDA microspheres loaded with two anticancer drugs, hydrophilic doxorubicin hydrochloride and hydrophobic paclitaxel, of 17 concentration combinations were simultaneously prepared. The drug-induced apoptosis of human uterine cervix cancer cells was investigated using the dual-drug-loaded PEGDA microspheres. The optimum synergistic concentration combination of the two drugs was 12.5 μg mL?1 for doxorubicin hydrochloride and 43.75 μg mL?1 for paclitaxel according to the preliminary screening. The superposable double-gradient droplet array generator was demonstrated to be a promising platform for screening multiple drug combination in microcarriers.  相似文献   

8.
Synthetic aperture radar images, combined with field measurements, were used to estimate net primary productivity (NPP) of aquatic vegetation in the lower Amazon. Input data for a NPP model are (i) the total biomass of aquatic vegetation, determined by radar imagery and field measurements and (ii) the area occupied by aquatic vegetation, determined from radar imagery. After correction for monthly biomass losses, the NPP of one growth cycle of aquatic vegetation was calculated in the image domain. The total net primary productivity of Hymenachne amplexicaules, the dominant aquatic vegetation in the area, was on average 19×1011 g C yr?1 for the entire area. Spatially, lower values of produced organic carbon (<900 g C m?2 yr?1) are confined to regions where the plants developed only in the beginning of the rising phase of the hydrological cycle. In general, values are higher (>5000 g C m?2 yr?1) in areas closer to the Amazon River where the availability and influence of nutrient‐rich water is greater.  相似文献   

9.
Laser-induced breakdown spectroscopy (LIBS) has been applied for quantitative analysis of Al2O3, CaCO3 and MgO particles suspended in water. In the single elemental system, the plasma emission intensities of Al, Ca and Mg were linearly increased with concentration of elements in the range of 1.0×10?5–1.0×10?3  M, 1.0×10?4–2.0×10?3 M and 8.0×10?5 –4.0×10?3 M, respectively. We also investigated the concentration dependence of breakdown spectra for suspended mixtures of Al2O3, CaCO3 and MgO particles. The emission lines, such as Al I, Ca I, Ca II and Mg I, were appeared in the LIBS spectrum simultaneously, and each emission peak could be deconvoluted. The plasma emission intensities of Al, Ca and Mg in the multielemental system were also linearly increased with their concentrations in the range of 1.0×10?5–1.0×10?3 M, 1.0×10?4–2.0×10?3 M and 4.0×10?4–2.0×10?3 M, respectively. LIBS was found to be available for quantitative and qualitative measurement of the concentrations of Al2O3, CaCO3 and MgO particles suspended in water. The present results suggest that LIBS is a potentially useful tool for in-situ analysis on particles composition and concentrations for environmental monitoring by the wearable information equipments.  相似文献   

10.
The diffusion coefficient of dissolved oxygen (DO) was measured in a microchannel using the UV-LED induced fluorescence method. Mass transfer between oxic and anoxic de-ionized (DI) water was quantitatively visualized in a Y-shaped microchannel. Oxygen-sensitive ruthenium (tris (2,2′-bipyridine) ruthenium (II) chloride hexahydrate] and a 450-nm UV-LED were used for the optical measurement of a DO concentration field. In situ pixel-by-pixel calibration was carried out to obtain Stern–Volmer equations to measure the DO concentration field with a spatial resolution of 0.625 μm/pixel. The diffusion layers are successfully acquired for different Reynolds numbers (Re = 0.14, 1.4, and 14). The DO diffusion coefficient is calculated by both the constant-assumed and the concentration-dependent diffusion coefficient methods. The measured DO diffusion coefficient, 2.32 × 10?9 m2/s, is very close to that of the theoretical prediction of the oxygen gas diffusion coefficient, 2.16 × 10?9 m2/s.  相似文献   

11.
The potential applicability of the leaf radiative transfer model PROSPECT (version 3.01) was tested for Norway spruce (Picea abies (L.) Karst.) needles collected from stress resistant and resilient trees. Direct comparison of the measured and simulated leaf optical properties between 450–1000 nm revealed the requirement to recalibrate the PROSPECT chlorophyll and dry matter specific absorption coefficients k ab(λ) and k m(λ). The subsequent validation of the modified PROSPECT (version 3.01.S) showed close agreement with the spectral measurements of all three needle age‐classes tested; the root mean square error (RMSE) of all reflectance (ρ) values within the interval of 450–1000 nm was equal to 1.74%, for transmittance (τ) it was 1.53% and for absorbance (α) it was 2.91%. The total chlorophyll concentration, dry matter content, and leaf water content were simultaneously retrieved by a constrained inversion of the original PROSPECT 3.01 and the adjusted PROSPECT 3.01.S. The chlorophyll concentration estimated by inversion of both model versions was similar, but the inversion accuracy of the dry matter and water content was significantly improved. Decreases in RMSE from 0.0079 g cm?2 to 0.0019 g cm?2 for dry matter and from 0.0019 cm to 0.0006 cm for leaf water content proved the improved performance of the recalibrated PROSPECT version 3.01.S.  相似文献   

12.
The Cariaco Basin, located on the continental margin of the south-eastern Caribbean Sea, has been a site of extensive oceanographic research since the early 1950s. Here we examined the seasonal and spatial variability in satellite wind, sea surface temperature (SST), surface chlorophyll (CHL), and primary production (PP) within the Cariaco Basin (1994–2009). This variability has implications in modulating the vertical flux of particulate material to the bottom of the basin. While cross-shore Ekman Transport was positive (upwelling inducing) year-round, it showed 20–60% higher values (stronger upwelling) in the eastern sub-basin, compared to the western sub-basin 1.35–2.77 m2 s?1 and 1.06–1.73 m2 s?1, respectively; < 0.01). This translated into differences in CHL concentration and PP rates between the eastern and western Cariaco sub-basins. Long-term seasonal means of SST, CHL, and PP showed significant inter-basin differences (p < 0.01) between December and July; during that period the eastern basin was cooler (24.86 ± 1.03°C vs. 25.56 ± 0.80°C, p < 0.01), with higher CHL (0.50 mg m?3 vs. 0.35 mg m?3; p < 0.01) and PP (1763 ± 994 vs. 782 ± 129 mg C m?2 day?1, p < 0.01) than the western sub-basin. The eastern Cariaco sub-basin had larger seasonal amplitude and variability in oceanographic characteristics than the western sub-basin, while the western sub-basin had slightly higher and more variable seasonal riverine run-off inputs. These differences have implications for the interpretation of the paleoclimate sediment record stored in different sectors of the Cariaco Basin.  相似文献   

13.
The preliminary analysis of agricultural water productivity (AWP) over India using satellite data were investigated through productivity mapping, water use (actual evapotranspiration (ETa)/effective rainfall (Reff) mapping and water productivity mapping. Moderate Resolution Imaging Spectroradiometer data was used for generating agricultural land cover (MCD12Q1 at 500 m), gross primary productivity (GPP; MOD17A2 at 1 km), and ETa (MOD16A2 at 1 km). Reff was estimated at 10 km using the United States Department of Agriculture soil conservation service method from daily National Oceanic and Atmospheric Administration Climate Prediction Center rainfall data. Six years’ (2007–2012) data were analysed from June to October. The seasonal AWP and rainwater productivity (RWP) were estimated using the ratios of seasonal GPP (kg C m?2) and water use (mm) maps. The average AWP and RWP ranges from 1.10–1.30 kg Cm?3 and 0.94–1.0 kg C m?3, respectively, with no significant annual variability but a wide spatial variability over India. The highest AWP was observed in northern India (1.22–1.80 kg C m?3) and lowest in western India (0.81–1.0 kg C m?3). Large variations in AWP (0.69–1.80 kg C m?3) were observed in Himachal Pradesh, Jammu and Kashmir, northeastern states (except Assam), Kerala, and Uttaranchal. The low GPP of these areas (0.0013–0.13 kg C m?2) with low seasonal total ETa (<101 mm) and Reff (<72 mm) making the AWP high that do not correspond to high productivity but possible water stress. Gujarat, Rajasthan, Maharashtra, Madhya Pradesh, Jharkhand, and Karnataka showed low AWP (0.73–1.13 kg C m?3) despite having high ETa (261–558 mm) and high Reff (287–469 mm), indicating significant scope for improving productivity. The highest RWP was observed in northern parts and Indo-Gangetic plains (0.80–1.6 kg C m?3). The 6 years’ analysis reveals the status of AWP, leading to appropriate interventions to better manage land and water resources, which have great importance in global food security analysis.  相似文献   

14.
We used multiyear Greenhouse Gases Observing Satellite (GOSAT) dry air, column-integrated CO2 (XCO2) retrievals (2010–2013) to evaluate urban and local-scale CO2 emissions over East Asia and examined whether GOSAT XCO2 captures the impact of strong local CO2 emissions over South Korea, an East Asian downwind region with high atmospheric aerosol loading and strong summer monsoons. We chose a region in western Mongolia (upwind region) as the XCO2 background, and estimated XCO2 enhancements in South Korea to gauge local and regional emissions. We found that the cold season (November–February) was better suited for estimating XCO2 enhancements of local emissions due to the summer monsoon and stronger transboundary impacts in other seasons. In particular, we focused on three local GOSAT XCO2 footprints (about 10.5 km in diameter) in South Korea: the Seoul Metropolitan Area (SMA), the Gwangyang Steelworks and Hadong power plants (GYG), and the Samcheonpo power plants (SCH). The range of XCO2 enhancement was 7.3–10.7 ppm (14.1–21.3 mg m?3 in standard temperature and pressure (STP)). By estimating other important contributions to XCO2 enhancements such as the XCO2 latitudinal gradients and Chinese fossil fuel combustions, we estimated the net enhancements caused mainly by local CO2 emissions in the range of 4.2–7.6 ppm (8.1–14.7 mg m?3 in STP) These high enhancements imply that large point source contributions are an important factor in determining these enhancements, even if contributions are also made by broader-scale emissions. Additionally, differences in net XCO2 enhancements and trends between GYG (+ 4.2 ppm (+ 8.2 mg m?3 in STP), – 0.2 ppm year?1 (–0.4 mg m?3 year?1 in STP)) and SCH (+ 7.6 ppm (+ 14.9 mg m?3 in STP), + 1.3 ppm year?1 (+ 2.6 mg· m?3 year?1 in STP)) indicate that these closely located footprints (approximately 26 km apart) are separable. These results will be useful in evaluating and reducing uncertainties in regional and local anthropogenic greenhouse gas (GHG) emissions over East Asia.  相似文献   

15.
June 2008, which is also the transition month between two major seasons for Indo-Gangetic Basin (IGB), has been identified the coolest June over New Delhi during the past century, showing mean temperature of 31.6 ± 1.7°C, which was found to be ~2°C less than its climatological mean (33.9°C). Aerosol optical properties for this month and thus obtained physical parameters have been studied using data from the CIMEL sun/sky radiometer, installed in New Delhi under the Aerosol Robotic Network (AERONET) programme. Results reveal bimodal aerosol volume size distribution. The monthly mean values for aerosol optical depth (AOD) at 500 nm (0.96 ± 0.31) and Ångström exponent at the wavelength pair of 440–870 nm (0.79 ± 0.42) show significant lower values whereas single scattering albedo at 675 nm shows a significantly larger value (0.94 ± 0.04) compared with previous measurements over the station. Results suggest dominance of scattering-type particles such as water-soluble aerosols from anthropogenic sources and dust aerosols from natural sources with higher relative humidity over the station. Radiative forcing caused due to the aerosols for the month of June 2008, which have been computed using the radiative-transfer model, informs low forcing at the top of atmosphere (TOA,?+14 W m?2) as well as at surface (?33 W m?2). The resultant atmospheric forcing (+47 W m?2) indicates warming effect that caused heating of lower atmosphere at the rate of 0.89 K day?1.  相似文献   

16.
This study attempted to quantify the variations of the surface marine atmospheric boundary layer (MABL) parameters associated with the tropical Cyclone Gonu formed over the Arabian Sea during 30 May–7 June 2007 (just after the monsoon onset). These characteristics were evaluated in terms of surface wind, drag coefficient, wind stress, horizontal divergence, and frictional velocity using 0.5° × 0.5° resolution Quick Scatterometer (QuikSCAT) wind products. The variation of these different surface boundary layer parameters was studied for three defined cyclone life stages: prior to the formation, during, and after the cyclone passage. Drastic variations of the MABL parameters during the passage of the cyclone were observed. The wind strength increased from 12 to 22 m s?1 in association with different stages of Gonu. Frictional velocity increased from a value of 0.1–0.6 m s?1 during the formative stage of the system to a high value of 0.3–1.4 m s?1 during the mature stage. Drag coefficient varied from 1.5 × 10?3 to 2.5 × 10?3 during the occurrence of Gonu. Wind stress values varied from 0.4 to 1.1 N m?2. Wind stress curl values varied from 10 × 10?7 to 45 × 10?7 N m?3. Generally, convergent winds prevailed with the numerical value of divergence varying from 0 to –4 × 10?5 s?1. Maximum variations of the wind parameters were found in the wall cloud region of the cyclone. The parameters returned to normally observed values in 1–3 days after the cyclone passage.  相似文献   

17.
We designed a fast procedure to detect the nitrogen oxides (NOx) sources in the China North Plain and to estimate their NOx emissions through a two-dimensional Gaussian fitting method applied to averaged Ozone Monitoring Instrument (OMI) observations of nitrogen dioxide (NO2) column concentration. The Northern China Plain is a region that has one of the highest densities of anthropogenic NOx sources in the world and therefore the sources are difficult to distinguish. With our procedure we still found 94 individual NOx emission sources. Of these sources Tangshan city has the strongest NOx emission rate (92 Gg N year–1), while the weakest that we are still able to detect is Zhangjiakou city, with a NOx emission rate of 0.4 Gg N year–1. Using the fitting results, we reconstruct the NO2 column concentration distribution map, which matches the OMI observations with an R2 = 0.85 and a slope of 0.78. The derived NOx emission rates for cities and provinces level show good agreement with former studies.  相似文献   

18.
Particulate matter (PM) air‐quality information is usually derived from ground‐based instruments. These measurements, while valuable, are not well suited to provide air‐quality information over large spatial scales. In this study, using 4 years of satellite aerosol optical thickness (AOT) at 0.55 µm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra and Aqua satellites, we present a multi‐year air analysis of PM air quality over Sydney, Australia. We then compare the satellite data with PM2.5 mass concentration measurements from six ground‐based stations in the area. Our results indicate significant diurnal variations and an overall increase in PM2.5 during Southern Hemisphere spring and summer seasons due to bush fires. The air quality in Sydney, Australia is good throughout the year except during major bushfires when PM2.5 mass loading can increase from normal (<20 µg m?3) to unhealthy conditions (>70 µg m?3). The satellite data also show corresponding AOT changes from less than 0.1 to greater than 1.0 during bushfire events. We conclude that satellite data are an excellent tool for studying PM air quality over large areas, especially when ground measurements are not available. While this is the first multi‐year combined satellite and ground‐based air quality analysis over Sydney, ancillary information from lidars, sun photometers, and size‐resolved chemistry measurements will further enhance our capability to monitor and forecast air quality in and around Sydney.  相似文献   

19.
Moderate Resolution Imaging Spectroradiometer (MODIS) products and climate data collected from meteorological stations were used to characterize the spatial–temporal dynamics of gross primary productivity (GPP), evapotranspiration (ET), and water-use efficiency (WUE) in the Yangtze River Delta (YRD) region and the response of these three variables to meteorological factors. The seasonal patterns of GPP and WUE showed a bimodal distribution, with their peak values occurring in May and August, and April and October, respectively. By contrast, the seasonal variation of ET presented a unimodal pattern with its maximum in July or August. The spatial distribution of ET and GPP was similar to higher values occurring in the south. From 2001 to 2012, GPP in the eastern YRD decreased, while GPP in the western part increased. In comparison, over the 12 years, ET in the northern part of YRD decreased, while ET in the southern part increased. The spatial distribution and spatial variation of WUE were both similar to those of GPP. This implies that the changes in WUE are primarily controlled by the variations in GPP. The annual average WUE over vegetation types followed the order of: evergreen broadleaf forest (1.95 g C kg?1 H2O) > deciduous broadleaf forest (1.87 g C kg?1 H2O) > evergreen needle leaf forest (1.70 g C kg?1 H2O) > deciduous needle leaf forest (1.68 g C kg?1 H2O) > grassland (1.66 g C kg?1 H2O) > cropland (1.61 g C kg?1 H2O). Both GPP and ET increased with increasing annual mean temperature (Ta) and annual mean precipitation across all of the plant function types. WUE decreased as vapour pressure deficit (VPD) increased in all of the biomes. Interestingly, the relationship between WUE and VPD was the most significant in broadleaf forest. Whether this phenomenon is universal should be investigated in future studies.  相似文献   

20.
Global nitrogen deposition has increased over the past 100 years. Monitoring and simulation studies of nitrogen deposition have evaluated nitrogen deposition at both the global and regional scale. With the development of remote-sensing instruments, tropospheric NO2 column density retrieved from Global Ozone Monitoring Experiment (GOME) and Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) sensors now provides us with a new opportunity to understand changes in reactive nitrogen in the atmosphere. The concentration of NO2 in the atmosphere has a significant effect on atmospheric nitrogen deposition. According to the general nitrogen deposition calculation method, we use the principal component regression method to evaluate global nitrogen deposition based on global NO2 column density and meteorological data. From the accuracy of the simulation, about 70% of the land area of the Earth passed a significance test of regression. In addition, NO2 column density has a significant influence on regression results over 44% of global land. The simulated results show that global average nitrogen deposition was 0.34 g m?2 yr?1 from 1996 to 2009 and is increasing at about 1% per year. Our simulated results show that China, Europe, and the USA are the three hotspots of nitrogen deposition according to previous research findings. In this study, Southern Asia was found to be another hotspot of nitrogen deposition (about 1.58 g m?2 yr?1 and maintaining a high growth rate). As nitrogen deposition increases, the number of regions threatened by high nitrogen deposits is also increasing. With N emissions continuing to increase in the future, areas whose ecosystem is affected by high level nitrogen deposition will increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号