首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) instrument, launched onboard the Orbimage 2 satellite, is composed of an optical scanner with eight channels that are used to interpret the ocean colour, and has been operational since September 1997. SeaWiFS data were received by the Dundee Satellite Receiving Station and processed by the Plymouth Marine Laboratory with a slight time-lag. In situ measurements of reflectance, salinity, seston and chlorophyll a were analysed during the Biomet surveys to gain a better knowledge of the dynamics of the Gironde turbid plume during this period. The results showed logarithmic relationships between the SeaWiFS normalized water-leaving radiances (n L w ) at 490 and 555 nm (n L w (490) and n L w (555)), and the suspended particle matter concentrations. The relationship between the n L w (555) radiances and these concentrations is used to map the coastal terrigenous turbidities. But the chlorophyll a concentrations calculated from SeaWiFS are overestimated in the turbid waters. The n L w (490)/n L w (555) ratio decreases with increasing turbidity and with increasing chlorophyll a concentration. To distinguish the chlorophyll a in turbid waters, the n L w (490) radiances are calculated from n L w (555) considering only the effect of terrigenous turbidity. Then, the n L w (490) SeaWiFS image is compared to the calculated n L w (490), to reveal the 'negative' areas caused by the chlorophyll a and yellow substance absorption.  相似文献   

2.
The Spanish surface fishery operates mainly during the summer season in the waters of the Bay of Biscay. Sea surface temperature (SST) data recovered from satellite images are being used to improve the operational efficiency of fishing vessels (e.g. reduce search time and increase catch rate) and to improve the understanding of the variations in catch distribution and rate needed to properly manage fisheries. The images used for retrieval of SST often present gaps due to the existence of clouds or satellite malfunction periods. The data gaps can totally or partially affect the area of interest. Within this study, an application of a technique for the reconstruction of missing data called DINEOF (data interpolating empirical orthogonal functions) is analysed, with the aim of testing its applicability in operational SST retrieval during summer months. In this case study, the Bay of Biscay is used as the target area. Three months of SST Moderate Resolution Imaging Spectroradiometer (MODIS) images, ranging from 1 May 2006 to 31 July 2006, were used. The main objective of this work is to test the overall performance of this technique, under potential operational use for the support of the fleet during the summer fishing season. The study is designed to analyse the sensitivity of the results of this technique to several details of the methodology used in the reconstruction of SST, such as the number of empirical orthogonal functions (EOFs) retained, the handling of the seasonal cycle or the length (number of images) of the SST database used. The results are tested against independent SST data from International Comprehensive Ocean–Atmosphere Data Set (ICOADS) ship reports and standing buoys and estimations of the error of the reconstructed SST fields are given.

Conclusions show that over this area three months of data are enough for efficient SST reconstruction, which yields four EOFs as the optimal number needed for this case study. An extended EOF experiment with SST and SST with a lag of one day was carried out to analyse whether the autocorrelation of the SST data allows better performance in the SST reconstruction, although the experiment did not improve the results. The validation studies show that the reconstructed SSTs can be trusted, even when the amount of missing data is very high. The mean absolute deviation maps show that the error is greatest near to the coast and mainly in the upwelling areas close to the French and north-western Spanish coasts.  相似文献   

3.
In biological modelling of the coastal phytoplankton dynamics, the light attenuation coefficient is often expressed as a function of the concentrations of chlorophyll and mineral suspended particulate matter (SPM). In order to estimate the relationship between these parameters over the continental shelf of the northern Bay of Biscay, a set of in situ data has been gathered for the period 1998-2003 when SeaWiFS imagery is available. These data comprise surface measurements of the concentrations of total SPM, chlorophyll, and irradiance profiles from which is derived the attenuation coefficient of the photosynthetically available radiation, KPAR. The performance of the IFREMER look-up table used to retrieve the chlorophyll concentration from the SeaWiFS radiance is evaluated on this new set of data. The quality of the estimated chlorophyll concentration is assessed from a comparison of the variograms of the in situ and satellite-derived chlorophyll concentrations. Once the chlorophyll concentration is determined, the non living SPM, which is defined as the SPM not related to the dead or alive endogenous phytoplankton, is estimated from the radiance at 555 nm by inverting a semi-analytic model. This method provides realistic estimations of concentrations of chlorophyll and SPM over the continental shelf all over the year. Finally, a relationship, based on non living SPM and chlorophyll, is proposed to estimate KPAR on the continental shelf of the Bay of Biscay. The same formula is applied to non living SPM and chlorophyll concentrations, observed in situ or derived from SeaWiFS radiance.  相似文献   

4.
Ocean colour imagery is used increasingly as a tool to assess water quality via chlorophyll-a concentration (chl-a) estimations in European waters. The Bay of Biscay is affected by major river discharges, which alter the constituents of the marine waters. Chlorophyll-a algorithms, designed for use at global scales, are less accurate due to the variability of optically active in-water constituents. Hence, regionally parameterized empirical algorithms are necessary. The main objective of the present study was to develop a regional algorithm to retrieve chl-a in surface water using in situ R rs, for a subsequent application to Medium Resolution Imaging Spectrometer (MERIS) satellite images. To address this objective, a platform was developed initially and a measurement procedure adapted for the field HR4000CG Spectrometer. Subsequently, the procedure was tested during a survey over the south-eastern Bay of Biscay (North-East Atlantic Ocean), to establish a MERIS chl-a algorithm for the area, by comparing different global remote sensing chl-a algorithms, with band ratios. Results validated with the jackknife resampling procedure show a satisfactory relationship between the R rs(510)/R r s(560) and chl-a (R 2 jac?=?0.681). This ratio is better correlated to chl-a than those obtained with established chl-a remote sensing algorithms. High content in coloured dissolved organic matter (CDOM > 0.4 m?1) and suspended particulate matter (SPM > 2.8 mg l?1) influenced this relationship, with yellow substances having a stronger effect.  相似文献   

5.
Based on a feed-forward and error-back-propagated neural network (NN), a new bio-optical algorithm is developed for the Bay of Biscay. It is designed as a set of NNs individually dedicated to the retrieval of the phytoplankton chlorophyll (chl), and total suspended matter (tsm) from Sea-viewing Wide Field-of-View Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua data. The retrieved versus in situ measured concentrations of chl and tsm correlation coefficients for chl proved to be ~0.8 (SeaWiFS) and 0.72 (MODIS), and for tsm 0.71 (SeaWiFS) and 0.74 (MODIS). The developed NN-based bio-optical algorithms are employed to assess the compatibility of SeaWiFS and MODIS data on chl and tsm in the coastal zone of the Bay of Biscay (case 2 waters). The value of the ratio between the concentration of chl and tsm derived from the same-day SeaWiFS and MODIS data (the overflight time difference, Δt is ≤2.5 hours) has in most cases values of approximately 1, however, in specific cases it varies appreciably. These results indicate that, unlike the reportedly very successful cases of merging of SeaWiFS and MODIS data on chl in open ocean waters (case 1 waters), the merging of chl (and tsm) data from these sensors collected over case 2 waters needs to be supervised at a level of a few pixels. At the same time, when averaged over the entire coastal zone of the Bay of Biscay, the retrieved monthly mean chl and tsm concentrations from SeaWiFS and MODIS practically coincide throughout the years (2002–2004) of contemporaneous operation of these two satellite sensors. Thus, even in the case of such dynamic and optically complex case 2 waters that are inherent in the Bay of Biscay, the potentials for ocean colour data merging are very good. The merging efficiency is assessed and illustrated via documenting the spatio-temporal dynamics of bottom sediment re-suspension in the bay occurring in winter – the season of heaviest cloudiness over the bay.  相似文献   

6.
Concentrations of the phytoplankton pigment chlorophyll-a (Ca) provide indicators of nutrient over-enrichment that has negatively affected Chesapeake Bay, U.S.A. Ca time-series from the National Aeronautics and Space Administration (NASA) Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer aboard the Aqua spacecraft (MODIS-Aqua) provide observations on temporal and spatial scales that far exceed current field and aircraft sampling strategies. These sensors provide consistent, frequent, and high density data to potentially complement ongoing Bay monitoring activities. We used the in situ Water Quality Monitoring Data set of the Chesapeake Bay Program to evaluate decade-long time-series of SeaWiFS and MODIS-Aqua Ca retrievals in the Bay. The accuracy of the retrievals generally degraded with increasing latitude as the optical complexity increases northward. Ca derived using empirical (“band ratio”) algorithms overestimated in situ measurements by 10-50 and 40-100% for SeaWiFS and MODIS-Aqua, respectively, but with limited variability. Ca derived using spectral-matching algorithms showed less bias for both sensors, but with significant variability and sensitivity to radiometric errors. Regionally-tuned empirical algorithms performed best throughout the Bay, offering a combination of reasonable accuracy and high spatial coverage. The radiometric spectral resolution used as input to the algorithms strongly influenced the quality of Ca retrievals from both sensors. These results establish a baseline quantification of algorithm and sensor performance in a variable and stressed ecosystem against which novel approaches might be compared.  相似文献   

7.
Gridded time-series data are increasingly available for climatology research. Microwave imagery of snow water equivalent (SWE) has been accumulated at daily basis for over two decades, but complex spatial-temporal patterns in SWE dataset pose great challenges for exploration and interpretation. This paper introduces the use of several perspectives from a tri-space conceptualization of a time series of SWE grids combined with dimensionality reduction via the self-organizing map (SOM) method. While SOM has been predominantly viewed as a clustering mechanism within climatology research, we expand the visual-analytic potential of SOM for climate research with a series of conceptual, computational, and visual transformations. Specifically, we apply a medium-resolution SOM to an SWE dataset covering the Northern Hemisphere over a 20-year period, with high temporal resolution. Through clustering and visualization a number of distinct SWE patterns are identified, including mountainous, coastal, and continental regions. A subset of cells from six areas are selected for transition analysis, including mountainous (Sierra Nevada, Western Himalaya, Eastern Himalaya) and continental (central Siberia, western Russia and Midwest United States) regions. By combining with trajectory analysis, this SOM documents notable transitions in seasonal SWE accumulation and melt patterns in mountain ranges, suggesting that SWE in some geographic locations alternates between different discrete annual patterns. In the Sierra Nevada, transitions to classes with high SWE are shown to be related to the Southern Oscillation Index, demonstrating that the annual patterns and transitions in SWE regime identified by the SOM correspond to synoptic climate conditions.  相似文献   

8.
This paper presents results from three years of studying human-robot interaction in the context of the AAAI Robot Rescue Competition. We discuss our study methodology, the competitors’ systems and performance, and suggest ways to improve human-robot interaction in urban search and rescue (USAR) as well as other remote robot operations.
Jill L. DruryEmail:
  相似文献   

9.
Seasonal patterns of tropical evergreen forest green-up in Amazonia, corresponding to drought and the dry season, have recently been detected by the Enhanced Vegetation Index (EVI) and Leaf Area Index (LAI) products of the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensor. These observations provide additional evidence for solar radiation as the primary limiting factor regulating wet-tropical ecosystem processes. However, in situ structural mechanisms for forest canopy green-up are unclear and frequently inconsistent with observations. Here, we investigate the signal of seasonal green-up at several intensively measured sites, applying a rigorous series of filters to minimize error from atmospheric contamination that is common in tropical regions. We find that, while satellite-observed forest seasonality is sensitive to data-quality filtering, statistical noise reduction and spatial averaging, the signal is robust at sites where field observations are available, and in particular for the EVI. For the sites where field data are unavailable, it appears that additional filters to those commonly used to remove cloud effects and aerosols also reduce the seasonal magnitude of the LAI. These findings imply that seasonal tropical evergreen forest green-up remains sensitive to the methodology used in removing seasonal contamination from atmospheric conditions and that further field measurements and comparisons to remote sensing are required to reduce this uncertainty.  相似文献   

10.
The Bay of Bengal (BoB) exhibits a wide range of sea surface salinity (SSS), with very fresh water induced by heavy monsoonal precipitation and river run-offs to the north, and saltier water to the south. This is a particularly challenging region for the application of satellite-derived SSS measurements because of the potential pollution of the SSS signal by radio frequency interference (RFI) and land-induced contamination in this semi-enclosed basin. The present study validates recent level-3 monthly gridded (1° × 1°) SSS products from Soil Moisture and Ocean Salinity (SMOS) and Aquarius missions to an exhaustive in situ SSS product for the BoB. Current SMOS SSS retrievals do not perform better than existing climatologies. This is in stark contrast to Aquarius, which outperforms SMOS and available SSS climatologies everywhere in the BoB. While SMOS only captures the SSS seasonal evolution in the northern part of the Bay, Aquarius accurately captures the seasonal signal in the entire basin. The Aquarius product is also able to capture SSS non-seasonal anomalies, with an approximate correlation (r) of 0.75 with box-averaged in situ data in the northern, central, and western parts of the Bay. Aquarius can, thus, be confidently used to monitor large-scale year-to-year SSS variations in the BoB.  相似文献   

11.
In this study, the response of vegetation indices (VIs) to the seasonal patterns and spatial distribution of the major vegetation types encountered in the Brazilian Cerrado was investigated. The Cerrado represents the second largest biome in South America and is the most severely threatened biome as a result of rapid land conversions. Our goal was to assess the capability of VIs to effectively monitor the Cerrado and to discriminate among the major types of Cerrado vegetation. A full hydrologic year (1995) of composited AVHRR, local area coverage (LAC) data was converted to Normalized Difference Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI) values. Temporal extracts were then made over the major Cerrado vegetation communities. Both the NDVI and SAVI temporal profiles corresponded well to the phenological patterns of the natural and converted vegetation formations and depicted three major categories encompassing the savanna formations and pasture sites, the forested areas, and the agricultural crops. Secondary differences in the NDVI and SAVI temporal responses were found to be related to their unique interactions with sun-sensor viewing geometries. An assessment of the functional behaviour of the VIs confirmed SAVI responds primarily to NIR variations, while the NDVI showed a strong dependence on the red reflectance. Based on these results, we expect operational use of the MODIS Enhanced Vegetation Index (EVI) to provide improved discrimination and monitoring capability of the significant Cerrado vegetation types.  相似文献   

12.
Lake Tanganyika, the second largest freshwater ecosystem in Africa, is characterised by a significant heterogeneity in phytoplankton concentration linked to its particular hydrodynamics. To gather a proper understanding of primary production, it is necessary to consider spatial and temporal dynamics throughout the lake. In the present work, daily MODIS-AQUA satellite measurements were used to estimate chlorophyll-a concentrations and the diffuse attenuation coefficient (K490) for surface waters. The spatial regionalisation of Lake Tanganyika, based on Empirical Orthogonal Functions of the chlorophyll-a dataset (July 2002-November 2005), allowed for the separation of the lake in 11 spatially coherent and co-varying regions, with 2 delocalised coastal regions. Temporal patterns of chlorophyll-a showed significant differences between regions. Estimation of the daily primary production in each region indicates that the dry season is more productive than the wet season in all regions with few exceptions. Whole-lake daily primary productivity calculated on an annual basis (2003) was 646 ± 142 mg C m− 2 day− 1. Comparing our estimation to previous studies, photosynthetic production in Lake Tanganyika appears to be presently lower (about 15%), which is consistent with other studies which used phytoplankton biovolume and changes of δ13C in the lake sediments. The decrease in lake productivity in recent decades may be associated to changes in climate conditions.  相似文献   

13.
星载微波辐射计是一种测量大气的液态水和水汽含量的被动式星载遥感器,在海洋和大气环境探测中有重要的应用,在神舟飞船(神舟四号)、嫦娥卫星(嫦娥一号)等航天项目中均有成功的应用经历。数控单元作为星载微波辐射计的核心单元,承担着系统控制、数据处理及与卫星的数据通讯等重要功能。着重介绍了星载微波辐射计的数控单元的系统设计以及一些关键技术。  相似文献   

14.
Interpreting satellite microwave sea ice data during the melt season is difficult. Warm temperatures allow for a greater presence of water in the liquid phase at the surface and within the ice, resulting in similar backscattering responses for first-year ice (FYI) and multi-year ice (MYI). Differentiating these ice types is important, especially during summer, in view of the higher presence of seasonal marine traffic, functioning of the ecosystem, and the Inuit use of the marine icescape in summer. In this article, we investigate the similarities between geophysical, thermodynamic, and dielectric characteristics of the late-season MYI and FYI, and discuss how this can lead to a false detection of MYI. The study uses Radarsat-2 data for ice detection during summer. This involves an analysis of co-polarization versus cross-polarization (HH vs. HV), various incident angles (20°, 35°, and 45°), and ice types (FYI vs. MYI). Statistical analyses of the measurements obtained in 2009 identify the difficulty in differentiating ice types during summer. The results show that the physical and electromagnetic properties of the ice surfaces are virtually identical with few differences in the scattering of microwave energy. We conclude with suggestions on how a more effective differentiation of MYI and FYI types in the summer season can be accomplished.  相似文献   

15.
To investigate the long-term trends and effects of decadal solar variability in the upper tropospheric ozone, data obtained from the Stratospheric Aerosol and Gas Experiment II (SAGE II) aboard the Earth Radiation Budget Satellite (ERBS) during the period 1985–2005 were analysed using a multifunctional regression model over the Indian region (8–40° N; 65–100° E). Analysis of time series spanning these years shows statistically insignificant trends (at the two-sigma level (95% confidence level)) at upper tropospheric pressure levels (10?16 km). This period covers two solar cycles, one lasting from 1985 to 1995 and the other from 1996 to 2005; these are referred to as decade I and decade II, respectively. Since temporal variation in ozone number density indicates 11 year periodicity, trends are statistically significant when calculated separately during each solar cycle. Trend analysis indicates statistically significant positive trends (0.7 ± 1.7% to 3.9 ± 2.9% year?1 during decade I, and 2.2 ± 1.6% to 4.5 ± 3.0% year?1 during decade II). In general, higher ozone trends are observed during decade II. Seasonal variation in trends during decade II shows increasing trends during the pre-monsoon (0.8?3.8% year?1), monsoon (0.8?7.1% year?1), and post-monsoon (2.8?8.0% year?1) seasons. The annually averaged solar signal in ozone is found to be of the order of around??5 ± 4.3% to??13.8 ± 6.7%/(100 sfu). Results obtained in the present study are also compared with those obtained by other researchers.  相似文献   

16.
Timely information on spatial distribution and temporal dynamics of snow cover in the pan-Arctic zone is needed, as snow cover plays an important role in climate, hydrology and ecological processes. Here we report estimates of snow cover in the pan-Arctic zone (north of 45° N) at 1-km spatial resolution and at a 10-day temporal interval over the period of April 1998 to December 2001, using 10-day composite images of VEGETATION sensor onboard Système Pour l'Observation de la Terre (SPOT)-4 satellite. The results show that snow covered area (SCA) in North America (north of 45° N) increased from 1998 to 2001, while SCA in Eurasia (north of 45° N) decreased from 1998 to 2000 but increased in 2001. There were large spatial and temporal variations of snow cover in the pan-Arctic zone during 1998-2001.  相似文献   

17.
Accurate remote assessment of phytoplankton chlorophyll a (chla) concentration is particularly challenging in turbid, productive waters. Recently a conceptual model containing reflectance in three spectral bands in the red and near infra-red range of the spectrum was suggested for retrieving chla concentrations in turbid productive waters; it was calibrated and validated in lakes and reservoirs in Nebraska and Iowa. The objective of this paper is to evaluate the performance of this three band model as well as its special case, the two-band model to estimate chla concentration in Chesapeake Bay, as representative of estuarine Case II waters, and to assess the accuracy of chla retrieval. To evaluate the model performance, dual spectroradiometers were used to measure subsurface spectral radiance reflectance in the visible and near infra-red range of the spectrum. Water samples were collected concurrently and contained widely variable chla (9 to 77.4 mg/m3) and total suspended solids (7-65 mg/L dry wt). Colored dissolved organic matter (CDOM) absorption at 440 nm was 0.20 to 2.50 m− 1; Secchi disk transparency ranged from 0.28 to 1.5 m. The two- and three-band models were spectrally tuned to select the spectral bands for most accurate chla estimation. Strong linear relationships were established between analytically measured chla and both the three-band model [R− 1(675)-R− 1(695)] × R(730) and the two-band model R(720)/R(670), where R(λ) is reflectance at wavelength λ. The three-band model accounted for 81% of variation in chla and allowed estimation of chla with a root mean square error (RMSE) of less than 7.9 mg/m3, whereas the two-band model accounted for 79% of chla variability and RMSE of chla estimation was below 8.4 mg/m3. The three-band model with MERIS spectral bands allows accurate chla estimation with RMSE below 9.1 mg/m3. Two-band model with SeaWiFS bands and MODIS 667 nm and 748 nm bands can estimate chla with RMSE below 11 mg/m3. The findings underlined the rationale behind the conceptual model and demonstrated the robustness of this algorithm for chla retrieval in turbid, productive estuarine waters.  相似文献   

18.
This paper presents an explanation of the system dynamics method. It is based on the development of a detailed simulation model designed to examine the effectiveness of various environmental, fiscal and corporate policies on the flow of investment funds and mineral resources among a number of simulated mining firms and competing countries. Emphasis is placed on the development process and the reader is referred elsewhere for presentation and discussion of model output.  相似文献   

19.
Numerous land-cover change detection techniques have been developed with varying opinions about their appropriateness and success. Decisions on the selection of the most suitable change detection method is often influenced by the study region landscape complexity and the type of data used for analysis. For different climatic areas, the method that suits best the seasonal land-cover change identification remains uncertain. In this study, 11 different binary change detection methods were tested and compared with respect to their capability in detecting land-cover change/no-change information in different seasons. The methods include image differencing (I_Diff), Improved image differencing (Imp_Diff), principal component image differencing (PC_Diff), vegetation index differencing (VI_Diff), change vector analysis (CVA), image ratioing (IR), improved image ratioing (Imp_IR), vegetation index image ratioing (VI_R), multi-date principal component analysis (PCA) using all bands (M_PCA), two-date bands PCA (B_PCA), and two-date vegetation index images PCA (VI_PCA). Multi-Date Thematic Mapper (TM) data were used for a wide set of change image generation. A relatively new approach was applied for optimal threshold value determination for the separation of change/no-change areas. Research results indicated that any methods involving TM Band 4 performed better than those using TM Band 3 or 5 on each of the change periods. However, irrespective of the method used, the accuracy assessment and change/no-change validation results from normalized difference vegetation index (NDVI)-based techniques outperformed all other tested techniques in the change detection process (overall accuracy >90% and kappa value >0.85 for all six change periods). The image differencing technique was found to be marginally better than PCA and IR in most cases and any of these techniques can be used for change detection. However, because of the simplistic nature and relative ease in identifying both negative and positive changes from difference images, the NDVI differencing technique is recommended for seasonal land-cover change identification in the study region.  相似文献   

20.
Land surface albedo is a key parameter of the Earth’s climate system. It has high variability in space, time, and land cover and it is among the most important variables in climate models. Extensive large-scale estimates can help model calibration and improvement to reduce uncertainties in quantifying the influence of surface albedo changes on the planetary radiation balance. Here, we use satellite retrievals of Moderate Resolution Imaging Spectroradiometer (MODIS) surface albedo (MCD43A3), high-resolution land-cover maps, and meteorological records to characterize climatological albedo variations in Norway across latitude, seasons, land-cover type (deciduous forests, coniferous forests, and cropland), and topography. We also investigate the net changes in surface albedo and surface air temperature through site pair analysis to mimic the effects of land-use transitions between forests and cropland and among different tree species. We find that surface albedo increases at increasing latitude in the snow season, and cropland and deciduous forests generally have higher albedo values than coniferous forests, but for few days in spring. Topography has a large influence on MODIS albedo retrievals, with values that can change up to 100% for the same land-cover class (e.g. spruce in winter) under varying slopes and aspect of the terrain. Cropland sites have surface air temperature higher than adjacent forested sites, and deciduous forests are slightly colder than adjacent coniferous forests. By integrating satellite measurements and high-resolution vegetation maps, our results provide a large semi-empirical basis that can assist future studies to better predict changes in a fundamental climate-regulating service such as surface albedo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号