首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Landsat remote sensing of the central African humid tropics is confounded by persistent cloud cover and, since 2003, missing data due to the Landsat‐7 Enhanced Thematic Mapper Plus (ETM+) scan line corrector (SLC) malfunction. To quantify these limitations and their effects on contemporary forest cover and change characterization, a comparison was made of multiple Landsat‐7 image mosaics generated for a six Landsat path/row study site in central Africa for 2000 and 2005. Epoch 2000 mosaics were generated by compositing (i) two to three Landsat acquisitions per path/row, (ii) using the best single GeoCover 2000 acquisition for each path/row. Epoch 2005 composites were generated by compositing SLC‐off data using (iii) five to seven acquisitions per path/row, (iv) three acquisitions per path/row. Eighty per cent of pixels were of suitable quality for change detection between (ii) and (iv), emulating that which is possible with current GeoCover and planned Global Land Survey (GLS) inputs. In a more data intensive change detection analysis using mosaics (i) and (iii), 96% of pixels had suitable quality. Compositing more acquisitions per path/row for the study area systematically reduced the percentage of SLC‐off gaps and, when more than three acquisitions were composited, reduced the percentage of pixels with high likelihood of cloud, haze or shadow. The results indicate that additional input imagery to augment both the Geocover and GLS data may be required to enable forest cover and change analyses for regions of the humid tropics.  相似文献   

2.
Landsat 7 enhanced thematic mapper plus (ETM+) satellite imagery is an important data source for many applications. However, the scan line corrector (SLC) failed on 31 May 2003. As a result of the SLC failure, about 22% of the image data is missing in each scene; this is especially pronounced away from nadir. In this article, a local regression method called geographically weighted regression (GWR) is introduced for filling the gaps of the Landsat ETM+ imagery, and it is compared with kriging/cokriging for this purpose. The case studies show that the GWR approach is an effective technique to fill gaps in Landsat ETM+ imagery, although the image restoration is still not perfect. GWR performed marginally better than the complex cokriging method, which too has proven to be an effective method, but is computationally intensive. Although there are visible seam lines at the edges of the filled wide gaps in some bands, the validation results – including RMSE values, error distribution maps, and classification results for the case studies – demonstrate that the DN values estimated by GWR are in fact closer to those of the original image than the corresponding values estimated by kriging/cokriging.  相似文献   

3.
The long-term record of global Landsat data is an important resource for studying Earth's system. Given the identified gaps in Landsat data and the undetermined future status of Landsat data availability, alternatives to Landsat imagery need to be tested in an operational environment. In this study, forest land cover and crown closure maps generated from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and System Pour 1'Observation de la Terre (SPOT) data were compared to Landsat-based map products currently in use by the grizzly bear habitat-mapping program. Overall accuracies greater than 85% were obtained for both ASTER- and SPOT-based land cover maps. The ASTER and SPOT classification accuracies were higher than that achieved by Landsat. Crown closure maps derived from ASTER and SPOT data show a small increase in accuracy when compared to the Landsat products. Overall, these results demonstrate that ASTER and SPOT could provide alternative data sources for producing maps in the event of a gap in the Landsat data.  相似文献   

4.
Remote sensing of forest vertical structure is possible with lidar data, but lidar is not widely available. Here we map tropical dry forest height (RMSE = 0.9 m, R2 = 0.84, range 0.6-7 m), and we map foliage height profiles, with a time series of Landsat and Advanced Land Imager (ALI) imagery on the island of Eleuthera, The Bahamas, substituting time for vertical canopy space. We also simultaneously map forest disturbance type and age. We map these variables in the context of avian habitat studies, particularly for wintering habitat of an endangered Nearctic-Neotropical migrant bird, the Kirtland's Warbler (Dendroica kirtlandii). We also illustrate relationships between forest vertical structure, disturbance type and counts of forage species important to the Kirtland's Warbler. The ALI imagery and the Landsat time series are both critical to the result for forest height, which the strong relationship of forest height with disturbance type and age facilitates. Also unique to this study is that seven of the eight image time steps are cloud-cleared images: mosaics of the clear parts of several cloudy scenes. We created each cloud-cleared image, including a virtually seamless ALI image mosaic, with regression tree normalization. We also illustrate how viewing time series imagery as red-green-blue composites of tasseled cap wetness (RGB wetness composites) aids reference data collection for classifying tropical forest disturbance type and age. Our results strongly support current Landsat Program production of co-registered imagery, and they emphasize the value of seamless time series of cloud-cleared imagery.  相似文献   

5.
A postal survey, using questionnaires, has been used to collect retrospective land cover information for comparison with Landsat TM imagery. The questionnaires targeted selected farms in Warwickshire, UK based on spectral data from an image produced by an unsupervised classification of TM bands 2, 4 and 5. The information from the questionnaires was used as 'training data' in a supervised classification of the imagery and as 'testing data' for the assessment of classification accuracy. The analysis was performed using IDRISI, a raster based Geographical Information System (GIS). The overall accuracy of the classified image was 87%. Individual class accuracy ranged from 80% for oilseed rape to 94% for water. The Kappa coefficient for the classified image was 86.5%. The total area and percentage occupied by each class on the classified image was calculated. Comparisons with independent ground survey data indicated that difference in terms of area percentage coverage ranged from 0.45% for wheat to 1.49% for grassland. The methodology is workable for obtaining and using compatible ground referenced data with imagery taken in the recent past.  相似文献   

6.
基于视觉特征的多传感器图像配准   总被引:2,自引:0,他引:2       下载免费PDF全文
多传感器图像配准在空间图像处理中有非常重要的应用价值,但同时也面临着多源空间数据各异性困难。考虑到图像配准过程中的多分辨率视觉特征,采用基于小波的多分辨率图像分解来指导从粗到细的配准过程,利用扩展的轮廓跟踪算法提取满足视觉特征的轮廓,在轮廓链码曲率函数的基础上实现基于傅里叶变换的多分辨率形状特征匹配。与已有的基于特征的图像配准算法进行实验比较,实验结果表明该方法对于从多传感器得到的异质图像具有良好的配准效果。  相似文献   

7.
The present study explores the possibility of using Landsat imagery for mapping tropical forest types with relevance to forest ecosystem services. The central part in the classification process is the use of multi-date image data and pre-classification image smoothing. The study argues that multi-date imagery contains information on phenological and canopy structural properties, and shows how the use of multi-date imagery has a significant impact on classification accuracy. Furthermore, the study shows the value of applying small kernel smoothing filters to reduce in-class spectral variability and enhance between-class spectral separability. Making use of these approaches and a maximum likelihood algorithm, six tropical forest types were classified with an overall accuracy of 90.94%, and with individual forest classes mapped with accuracies above 75.19% (user's accuracy) and above 74.17% (producer's accuracy).  相似文献   

8.
Boreal forests are a critical component of the global carbon cycle, and timely monitoring allows for assessing forest cover change and its impacts on carbon dynamics. Earth observation data sets are an important source of information that allow for systematic monitoring of the entire biome. Landsat imagery, provided free of charge by the USGS Center for Earth Resources Observation and Science (EROS) enable consistent and timely forest cover updates. However, irregular image acquisition within parts of the boreal biome coupled with an absence of atmospherically corrected data hamper regional-scale monitoring efforts using Landsat imagery. A method of boreal forest cover and change mapping using Landsat imagery has been developed and tested within European Russia between circa year 2000 and 2005. The approach employs a multi-year compositing methodology adapted for incomplete annual data availability, within-region variation in growing season length and frequent cloud cover. Relative radiometric normalization and cloud/shadow data screening algorithms were employed to create seamless image composites with remaining cloud/shadow contamination of less than 0.5% of the total composite area. Supervised classification tree algorithms were applied to the time-sequential image composites to characterize forest cover and gross forest loss over the study period. Forest cover results when compared to independently-derived samples of Landsat data have high agreement (overall accuracy of 89%, Kappa of 0.78), and conform with official forest cover statistics of the Russian government. Gross forest cover loss regional-scale mapping results are comparable with individual Landsat image pair change detection (overall accuracy of 98%, Kappa of 0.71). The gross forest cover loss within European Russia 2000-2005 is estimated to be 2210 thousand hectares, and constitutes a 1.5% reduction of year 2000 forest cover. At the regional scale, the highest proportional forest cover loss is estimated for the most populated regions (Leningradskaya and Moskovskaya Oblast). Our results highlight the forest cover depletion around large industrial cities as the hotspot of forest cover change in European Russia.  相似文献   

9.
Modelling and mapping of hooded warbler (Wilsonia citrina) nesting habitat in forests of southern Ontario were conducted using Ikonos and Landsat data. The study began with an analysis of skyward hemispherical photography to determine canopy characteristics associated with nest sites. It showed that nest sites had significantly less overhead canopy cover and larger maximum gap size than in non-nest areas. These findings led to the hypothesis that brightness variability in high to moderate resolution remotely sensed imagery may be greater at nest sites than in non-nest areas due to larger shadows and greater shadow variability related to these gap characteristics. This was confirmed when, in addition to some spectral band brightness variables, several image texture and spectrally unmixed fraction (shadow, bare soil) variables were found to be significantly different for nest and non-nest sites in Ikonos and Landsat imagery. These significantly different variables were used in maximum likelihood classification (MLC) and logistic regression (LR) to produce maps of potential nesting habitat. Mapping was conducted with Ikonos and Landsat in a local area where most known nest sites occur, and regionally using Landsat data for almost all of the hooded warbler range in southern Ontario. For the local area mapping using Ikonos data, a posteriori probabilities for both the MLC and LR methods showed that about 62% of the nest sites set aside for validation had been classified with high probability (p > 0.70) in the nest class. MLC mapping accuracy was 70% for the validation nest sites and 87% of validation nest sites were within 10 m of classified nesting habitat, a distance approximately equivalent to expected positional error in the data. LR accuracy was slightly lower. Nest site MLC mapping accuracy in the local area using Landsat data was 87% but the map was much coarser due to the larger pixel size. Regional mapping with Landsat imagery produced lower classification accuracy due to high errors of commission for the habitat class. This resulted from a poor spatial distribution and low number of observations of nest sites throughout the region compared to the local area, while the non-nest site data distribution was too narrow, having been defined and assessed (using standard accepted methods) as areas with no ground shrubs. If either of these problems can be ameliorated, regional mapping accuracy may improve.  相似文献   

10.
To improve the usability of Enhanced Thematic Mapper Plus (ETM+) scan line corrector (SLC)-off data, this article proposes using HJ-1A/1B imagery as auxiliary (i.e. reference) data to recover the SLC-off ETM+ data. The least-median-of-squares (LMedS) method is newly proposed to recover missing pixels of Landsat 7 by removing the variant or abnormal digital number values. In particular, for the visible and near-infrared bands, using HJ-1A/1B for recovery has three clear advantages: the same spatial resolution, similar spectral resolution, and approximate temporal resolution. The experiments show that all of the reference-recovery methods are better than the non-reference-recovery method. The results of using of auxiliary data in reference-recovery methods, from best to worst, are Landsat 8, HJ-1A/1B, and Landsat 7. However, for recovering missing pixels, HJ-1A/1B is superior to the ETM+ auxiliary data due to the shorter time interval in Landsat 7 (a few hours). Hence, HJ-1A/1B should be considered a useful auxiliary data to recover ETM+ SLC-off imagery data.  相似文献   

11.
Accurate land cover change estimates are among the headline indicators set by the Convention on Biological Diversity to evaluate the progress toward its 2010 target concerning habitat conservation. Tropical deforestation is of prime interest since it threatens the terrestrial biomes hosting the highest levels of biodiversity. Local forest change dynamics, detected over very large extents, are necessary to derive regional and national figures for multilateral environmental agreements and sustainable forest management. Current deforestation estimates in Central Africa are derived either from coarse to medium resolution imagery or from wall-to-wall coverage of limited areas. Whereas the first approach cannot detect small forest changes widely spread across a landscape, operational costs limit the mapping extent in the second approach. This research developed and implemented a new cost-effective approach to derive area estimates of land cover change by combining a systematic regional sampling scheme based on high spatial resolution imagery with object-based unsupervised classification techniques. A multi-date segmentation is obtained by grouping pixels with similar land cover change trajectories which are then classified by unsupervised procedures. The interactive part of the processing chain is therefore limited to land cover class labelling of object clusters. The combination of automated image processing and interactive labelling renders this method cost-efficient. The approach was operationally applied to the entire Congo River basin to accurately estimate deforestation at regional, national and landscape levels. The survey was composed of 10 × 10 km sampling sites systematically-distributed every 0.5° over the whole forest domain of Central Africa, corresponding to a sampling rate of 3.3%. For each of the 571 sites, subsets were extracted from both Landsat TM and ETM+ imagery acquired in 1990 and 2000 respectively. Approximately 60% of the 390 cloud-free samples do not show any forest cover change. For the other 165 sites, the results are depicted by a change matrix for every sample site describing four land cover change processes: deforestation, reforestation, forest degradation and forest recovery. This unique exercise estimates the deforestation rate at 0.21% per year, while the forest degradation rate is close to 0.15% per year. However, these figures are less reliable for the coastal region where there is a lack of cloud-free imagery. The results also show that the Landscapes designated after 2000 as high priority conservation zones by the Congo Basin Forest Partnership had undergone significantly less deforestation and forest degradation between 1990 and 2000 than the rest of the Central African forest.  相似文献   

12.
Satellite imagery is the major data source for regional to global land cover maps. However, land cover mapping of large areas with medium-resolution imagery is costly and often constrained by the lack of good training and validation data. Our goal was to overcome these limitations, and to test chain classifications, i.e., the classification of Landsat images based on the information in the overlapping areas of neighboring scenes. The basic idea was to classify one Landsat scene first where good ground truth data is available, and then to classify the neighboring Landsat scene using the land cover classification of the first scene in the overlap area as training data. We tested chain classification for a forest/non-forest classification in the Carpathian Mountains on one horizontal chain of six Landsat scenes, and two vertical chains of two Landsat scenes each. We collected extensive training data from Quickbird imagery for classifying radiometrically uncorrected data with Support Vector Machines (SVMs). The SVMs classified 8 scenes with overall accuracies between 92.1% and 98.9% (average of 96.3%). Accuracy loss when automatically classifying neighboring scenes with chain classification was 1.9% on average. Even a chain of six images resulted only in an accuracy loss of 5.1% for the last image compared to a reference classification from independent training data for the last image. Chain classification thus performed well, but we note that chain classification can only be applied when land cover classes are well represented in the overlap area of neighboring Landsat scenes. As long as this constraint is met though, chain classification is a powerful approach for large area land cover classifications, especially in areas of varying training data availability.  相似文献   

13.
Although burned-area mapping at a regional level is traditionally based on the use of Landsat data, the potential gap in the sensor's data collection emphasizes the need to find alternative data sources to be used in the operational mapping of burned areas. This work aims to investigate whether it is possible to develop a transferable object-based classification model for burned-area mapping using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. The initial step in the investigation involved the development of an object-based classification model for accurately mapping burned areas in central Portugal using an ASTER image, and subsequently an examination of its performance when mapping a burned area located on the island of Rhodes, Greece, using a different ASTER image. Results indicate that the combined use of object-based image analysis and ASTER imagery can provide an alternative operational tool that could be used to identify and map burned areas and thus fill a potential gap in Landsat data collection.  相似文献   

14.
Lakes in the Qinghai-Tibet Plateau are numerous and widely distributed, accounting for 41% and 57% of the total number and area of lakes in China, which are very important for the study of lakes in the whole country and even in the whole world. Remote sensing has been used to monitor the lake distribution for a long time, but optical remote sensing images are often obscured by clouds, from which it’s impossible to automatically extract complete lake boundaries. An automatic interpolation algorithm for lake boundary generation based on cloudy Landsat TM/OLI image and Shuttle Radar Topography Mission (SRTM) 30 m resolution Digital Elevation Model (DEM) is proposed. Firstly, supported by the platform of Google Earth Engine, the tier1 data of Landsat TM/OLI images are used to eliminate the effects of cloud, cloud shadow, snow and mountain area, based on the Pixel Quality Assessment (pixel_qa) attribute and SRTM 30 m DEM. Then, the Modified Normalized Difference Water Index (MNDWI) is calculated, and the Canny edge detection algorithm are used to obtain the known part of the lake boundary (L) in cloud-free areas. The possible lake areas are obtained by range filtering of DEM locally. At the same time, DEM is used to generate contours with an isometric interval of 1 m, and a series of contours surrounding the possible lake area are automatically screened out. The tree structure is established according to the inclusion relationship between contours. The leaf nodes are the innermost contours, which are recorded as inner contours (C1). Because the acquisition time of Landsat and DEM is different, with the lake expanding or shrinking, the lake water surface will rise or fall relative to the inner contour. Different methods of determining the outer contour (C2) are adopted. Subsequently, the slope-aspect relationship between the inner contour C1 and the outer contour C2 and the known part of the lake boundary L is established, and the unknown lake boundary points are interpolated. Finally, the nearest neighbor method is used to connect the known lake boundary points with the interpolated Lake boundary points to form a complete lake boundary. The extracted lake boundaries were validated by visual digitized lake boundaries from ZiYuan-3 image or cloud-free Landsat image on the near date. It is found that they are basically coincided, and the percentage of differences in length and area are -6.81%~9.4% and -2.11%~2.7% respectively. It shows that this method is very effective for automatic extraction of Lake boundary from cloudy Landsat TM/OLI images, and provides a new method for automatic extraction of long time series Lake boundary and its temporal and spatial variation analysis in the Qinghai-Tibet Plateau on GEE and other big data platforms.  相似文献   

15.
The Severnaya Zemlya Archipelago near the continental edge in the Russian high Arctic is one of few land areas along the Eurasian Arctic margin. It is of particular interest for investigating the Arctic's tectonic history. This study focuses on the Palaeozoic bedrock of October Revolution Island. In the Russian high Arctic detailed topographic maps and aerial photography often are not available. The potential of low-cost satellite imagery as a substitute is shown in this study. High-resolution Corona KH-4A panchromatic satellite imagery and Landsat Thematic Mapper (TM) multispectral data have been integrated. In combination with field investigations in key areas, these data provide the basis for new interpretations of the geology. Corona images were digitized and georeferenced to provide a basis for conventional and digital geological mapping. Merging Corona and Landsat TM data resulted in a high-resolution multispectral image of enhanced interpretability. Lithological contacts have been traced, supported by a bedrock image extracted from the Landsat TM data. Stereoscopic coverage of the Corona KH-4A photographic sensor allowed a structural interpretation. All results were integrated into a geological interpretation of southern October Revolution Island which provides an encouraging platform for further work in the high Arctic.  相似文献   

16.
A simple, efficient, and practical approach for detecting cloud and shadow areas in satellite imagery and restoring them with clean pixel values has been developed. Cloud and shadow areas are detected using spectral information from the blue, shortwave infrared, and thermal infrared bands of Landsat Thematic Mapper or Enhanced Thematic Mapper Plus imagery from two dates (a target image and a reference image). These detected cloud and shadow areas are further refined using an integration process and a false shadow removal process according to the geometric relationship between cloud and shadow. Cloud and shadow filling is based on the concept of the Spectral Similarity Group (SSG), which uses the reference image to find similar alternative pixels in the target image to serve as replacement values for restored areas. Pixels are considered to belong to one SSG if the pixel values from Landsat bands 3, 4, and 5 in the reference image are within the same spectral ranges. This new approach was applied to five Landsat path/rows across different landscapes and seasons with various types of cloud patterns. Results show that almost all of the clouds were captured with minimal commission errors, and shadows were detected reasonably well. Among five test scenes, the lowest producer's accuracy of cloud detection was 93.9% and the lowest user's accuracy was 89%. The overall cloud and shadow detection accuracy ranged from 83.6% to 99.3%. The pixel-filling approach resulted in a new cloud-free image that appears seamless and spatially continuous despite differences in phenology between the target and reference images. Our methods offer a straightforward and robust approach for preparing images for the new 2011 National Land Cover Database production.  相似文献   

17.
The process of gathering land-cover information has evolved significantly over the last decade (2000–2010). In addition to this, current technical infrastructure allows for more rapid and efficient processing of large multi-temporal image databases at continental scale. But whereas the data availability and processing capabilities have increased, the production of dedicated land-cover products with adequate accuracy is still a prerequisite for most users. Indeed, spatially explicit land-cover information is important and does not exist for many regions. Our study focuses on the boreal Eurasia region for which limited land-cover information is available at regional level.

The main aim of this paper is to demonstrate that a coarse-resolution land-cover map of the Russian Federation, the ‘TerraNorte’ map at 230 m × 230 m resolution for the year 2010, can be used in combination with a sample of reference forest maps at 30 m resolution to correctly assess forest cover in the Russian federation.

First, an accuracy assessment of the TerraNorte map is carried out through the use of reference forest maps derived from finer-resolution satellite imagery (Landsat Thematic Mapper (TM) sensor). A sample of 32 sites was selected for the detailed identification of forest cover from Landsat TM imagery. A methodological approach is developed to process and analyse the Landsat imagery based on unsupervised classification and cluster-based visual labelling. The resulting forest maps over the 32 sites are then used to evaluate the accuracy of the forest classes of the TerraNorte land-cover map. A regression analysis shows that the TerraNorte map produces satisfactory results for areas south of 65° N, whereas several forest classes in more northern areas have lower accuracy. This might be explained by the strong reflectance of background (i.e. non-tree) cover.

A forest area estimate is then derived by calibration of the TerraNorte Russian map using a sample of Landsat-derived reference maps (using a regression estimator approach). This estimate compares very well with the FAO FRA exercise for 2010 (1% difference for total forested area). We conclude that the TerraNorte map combined with finer-resolution reference maps can be used as a reliable spatial information layer for forest resources assessment over the Russian Federation at national scale.  相似文献   

18.
Conservation tillage management has been advocated for carbon sequestration and soil quality preservation purposes. Past satellite image analyses have had difficulty in differentiating between no-till (NT) and minimal tillage (MT) conservation classes due to similarities in surface residues, and may have been restricted by the availability of cloud-free satellite imagery. This study hypothesized that the inclusion of high temporal data into the classification process would increase conservation tillage accuracy due to the added likelihood of capturing spectral changes in MT fields following a tillage disturbance. Classification accuracies were evaluated for Random Forest models based on 250-m and 500-m MODIS, 30-m Landsat, and 30-m synthetic reflectance values. Synthetic (30-m) data derived from the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) were evaluated because high frequency Landsat image sets are often unavailable within a cropping season due to cloud issues. Classification results from a five-date Landsat model were substantially better than those reported by previous classification tillage studies, with 94% total and ≥ 88% class producer's accuracies. Landsat-derived models based on individual image scenes (May through August) yielded poor MT classifications, but a monthly increase in accuracy illustrated the importance of temporal sampling for capturing regional tillage disturbance signatures. MODIS-based model accuracies (90% total; ≥ 82% class) were lower than in the five-date Landsat model, but were higher than previous image-based and survey-based tillage classification results. Almost all the STARFM prediction-based models had classification accuracies higher than, or comparable to, the MODIS-based results (> 90% total; ≥ 84% class) but the resulting model accuracies were dependent on the MODIS/Landsat base pairs used to generate the STARFM predictions. Also evident within the STARFM prediction-based models was the ability for high frequency data series to compensate for degraded synthetic spectral values when classifying field-based tillage. The decision to use MODIS or STARFM-based data within conservation tillage analysis is likely situation dependent. A MODIS-based approach requires little data processing and could be more efficient for large-area mapping; however a STARFM-based analysis might be more appropriate in mixed-pixel situations that could potentially compromise classification accuracy.  相似文献   

19.
In this study, the consistency of systematic retrievals of surface reflectance and leaf area index was assessed using overlap regions in adjacent Landsat Enhanced Thematic Mapper-Plus (ETM+) scenes. Adjacent scenes were acquired within 7-25 days apart to minimize variations in the land surface reflectance between acquisition dates. Each Landsat ETM+ scene was independently geo-referenced and atmospherically corrected using a variety of standard approaches. Leaf area index (LAI) models were then applied to the surface reflectance data and the difference in LAI between overlapping scenes was evaluated. The results from this analysis show that systematic LAI retrieval from Landsat ETM+ imagery using a baseline atmospheric correction approach that assumes a constant aerosol optical depth equal to 0.06 is consistent to within ±0.61 LAI units. The average absolute difference in LAI retrieval over all 10 image pairs was 26% for a mean LAI of 2.05 and the maximum absolute difference over any one pair was 61% for a mean LAI of 1.13. When no atmospheric correction was performed on the data, the consistency in LAI retrieval was improved by 1%. When a scene-based dense, dark vegetation atmospheric correction algorithm was used, the LAI retrieval differences increased to 28% for a mean LAI of 2.32. This implies that a scene-based atmospheric correction procedure may improve the absolute accuracy of LAI retrieval without having a major impact on retrieval consistency. Such consistency trials provide insight into the current limits concerning surface reflectance and LAI retrieval from fine spatial resolution remote sensing imagery with respect to the variability in clear-sky atmospheric conditions.  相似文献   

20.
Mass movements (MM) represent a serious threat to human life and activities in most mountainous areas. However, due to the rugged nature of such terrain, it is often difficult to detect such phenomena in remote areas. Hence, satellite imagery offers many attractions for the examination of MM in such environments, especially in less developed nations in which resources are stretched and levels of environmental information limited. There is a need to ensure that the techniques and images used are effective, reliable, and cheap in terms of the amount and accuracy of data that can be extracted. Taking Lebanon as a case study, this paper compares the applicability of different satellite data sensors (Landsat TM (Thematic Mapper), IRS (Indian Remote Sensing Satellite), SPOT4 (Système Probatoire pour l’Observation de la Terre)) and preferred image‐processing techniques (False Colour Composite ‘FCC’, pan‐sharpen, principal‐component analysis ‘PCA’, Anaglyph) for the mapping of MM recognized as landslides, rock and debris falls, and earth flows. Results from the imagery have been validated by field surveys and analysis of IKONOS imagery acquired in some locations witnessing major MM during long periods. Then, levels of accuracies of detected MM from satellite imageries were plotted. This study has demonstrated that the anaglyph produced from the two panchromatic stereo‐pairs SPOT4 images remains the most effective tool setting the needed 3D properties for visual interpretation and showing a maximum accuracy level of 67%. The PCA pan‐sharpened Landsat TM‐IRS image gave better results in detecting MM, among other processing techniques, with a maximum accuracy level of 62%.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号