首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Soil Moisture Active Passive Validation Experiment 2012 was conducted as a pre-launch validation campaign for the Soil Moisture Active Passive mission over 6 weeks in June and July 2012. During this campaign, the Passive Active L-Band System (PALS) was flown at a low altitude, providing radar and radiometer measurements that were contained within a single agricultural field. The campaign domain consisted of 55 agricultural fields, where soil moisture was measured coincident to the PALS flight times and measurements of vegetation volumetric water content (VWC) and leaf area index (LAI) were measured weekly. The low-altitude flights allowed for the comparison between measured VWC and LAI for 11 fields to radar parameters derived from the radar backscatter. Only the correlation between the HV backscatter and the soybean VWC was considered strong (|r| > 0.7). All other correlations between the radar parameters and the VWC (or LAI) were moderate (0.3 < |r| < 0.7) or weak (|r|< 0.3). The established relationships between radar parameters and VWC were used in a forward radiation transfer model to estimate H-pol brightness temperature. It was found that the RMSE between the brightness temperatures estimated using the measured VWC was lowest when using the relationship between VWC and LAI (3.9 K for soybeans, 6.8 K for spring wheat, and 9.3 K when all crop data are combined). Despite a lower correlation, the RMSE associated with using the radar vegetation index relationship with VWC was less than when HV was used (7.9 K) for soybeans, which would result in an error in soil moisture estimation of just over 4%. The RMSEs for all other VWC and radar parameter relationships were greater than 10 K.  相似文献   

2.
3.
In this study, a semi-empirical modified vegetation backscattering model was developed to retrieve leaf area index (LAI) based on multi-temporal Radarsat-2 data and ground observations collected in China. This model combined the contribution of the vegetation and bare soil at the pixel level by adding vegetation coverage and the influence of bare soil on the total backscatter coefficients. Then, a lookup table algorithm was applied to calculate the value of vegetation water content and retrieve the LAI based on the linear relationship between the vegetation water content and LAI. The results indicated that the modified model was effective in evaluating and reproducing the total backscatter coefficients. Meanwhile, the LAI retrieval was well conducted with coefficient of determination (R2) and root mean square error (RMSE) of 89% and 0.19 m2 m?2, respectively. Additionally, this method offers insight into the required application accuracy of LAI retrieval in the agricultural regions.  相似文献   

4.
A microwave backscattering model for shrub clumps was presented. The modelling approach was to treat the clumps as scatterers and attenuators. Three major model components were defined: surface backscattering, clump volume scattering, and multiple path interactions between clumps and ground. Total backscatter was computed by incoherent summation of the components. We then used the model to study the effects of variations in surface and willow properties (soil moisture content, and surface roughness rms height and correlation length, and willow ground coverage, clump height, and stem density) on backscatter from willows in Alaskan boreal forest region. We examined the sensitivity to variations of the six parameters combined and to variation of each parameter alone from willows of three clump sizes representing different stages of vegetation regrowth after fire. Modelled C-band backscatter was more sensitive to the variations of the surface and willow parameters than L-band backscatter at incidence angles between 20° and 60°. At incidence angles of 20-60°, C-HH and C-VV backscatter was sensitive to the variations of the three surface parameters. L-HV and L-VV backscatter were only sensitive to the moisture variation. Among the three willow parameters, change of willow ground coverage produced more sensitive cases than variations of clump height and stem density combined at C- and L-band.  相似文献   

5.
A study was carried out to investigate the utility of L-band SAR data for estimating aboveground biomass in sites with low levels of vegetation regrowth. Data to estimate biomass were collected from 59 sites located in fire-disturbed black spruce forests in interior Alaska. PALSAR L-band data (HH and HV polarizations) collected on two dates in the summer/fall of 2007 and one date in the summer of 2009 were used. Significant linear correlations were found between the log of aboveground biomass (range of 0.02 to 22.2 t ha-1) and σ° (L-HH) and σ° (L-HV) for the data collected on each of the three dates, with the highest correlation found using the L-HV data collected when soil moisture was highest. Soil moisture, however, did change the correlations between L-band σ° and aboveground biomass, and the analyses suggest that the influence of soil moisture is biomass dependent. The results indicate that to use L-band SAR data for mapping aboveground biomass and monitoring forest regrowth will require development of approaches to account for the influence that variations in soil moisture have on L-band microwave backscatter, which can be particularly strong when low levels of aboveground biomass occur.  相似文献   

6.
Relationships between ERS-2 SAR backscatter and the biophysical properties of four Mediterranean vegetation formations (forest, shrubs, dwarf shrubs and herbaceous vegetation) were assessed. Low correlation was found between ERS-2 SAR backscatter and both aboveground biomass and LAI. However, significantly higher correlation (r =0.92) was found between ERS-2 SAR backscatter and a new index of Green leaf biomass Volumetric Density (GVD). These results stress the dominant influence of leaves in the uppermost part of the vegetation layer on ERS-2 SAR backscatter.  相似文献   

7.
Progress in deriving land surface biophysical parameters in a spatially explicit manner using remotely sensed data has greatly enhanced our ability to model ecosystem processes and monitor crop development. A multitude of satellite sensors and algorithms have been used to generate ready-to-use maps of various biophysical parameters. Validation of these products for different vegetation types is needed to assess their reliability and consistency. While most of the current satellite biophysical products have spatial resolution of one kilometre, a recent effort utilizing data from the Medium Resolution Imaging Spectrometer (MERIS) provided leaf area index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), and other canopy parameters in a resolution as fine as 300 m over the European continent. This resolution would be more appropriate for application at the regional scale, particularly for crop monitoring. This higher-resolution MERIS product has been evaluated in a limited number of studies to date. This article aims to validate LAI and FAPAR from the MERIS 10-day composite BioPar BP-10 product over winter wheat fields in northeast Bulgaria. The ground measurements of LAI and FAPAR were up-scaled and 30 m resolution reference raster layers were created using empirical relationships with Landsat TM (RMSE = 0.06 and RMSE = 0.22 for FAPAR and LAI, respectively). MERIS FAPAR and LAI were found to have significant correlation with FAPAR and LAI from the reference raster layers (R2 = 0.84 and R2 = 0.78, respectively). When MERIS Green LAI was calculated (incorporating the fraction of vegetation and brown vegetation cover from the BioPar BP-10 product), better correspondence with LAI values from the reference raster layer was achieved, with RMSE and bias reduced by 30–35%. The results from this study confirm the findings of previous validations showing that MERIS Green LAI tends to overestimate LAI values lower than 1. As a conclusion of the study, the BioPar BP-10 product was found to provide reliable estimates of FAPAR and acceptably accurate estimates of LAI for winter wheat crops in North-East Bulgaria.  相似文献   

8.
Satellite-based multispectral imagery and/or synthetic aperture radar (SAR) data have been widely used for vegetation characterization, plant physiological parameter estimation, crop monitoring or even yield prediction. However, the potential use of satellite-based X-band SAR data for these purposes is not fully understood. A new generation of X-band radar satellite sensors offers high spatial resolution images with different polarizations and, therefore, constitutes a valuable information source. In this study, we utilized a TerraSAR-X satellite scene recorded during a short experimental phase when the sensor was running in full polarimetric ‘Quadpol’ mode. The radar backscatter signals were compared with a RapidEye reference data set to investigate the potential relationship of TerraSAR-X backscatter signals to multispectral vegetation indices and to quantify the benefits of TerraSAR-X Quadpol data over standard dual- or single-polarization modes. The satellite scenes used cover parts of the Mekong Delta, the rice bowl of Vietnam, one of the major rice exporters in the world and one of the regions most vulnerable to climate change. The use of radar imagery is especially advantageous over optical data in tropical regions because the availability of cloudless optical data sets may be limited to only a few days per year. We found no significant correlations between radar backscatter and optical vegetation indices in pixel-based comparisons. VV and cross-polarized images showed significant correlations with combined spectral indices, the modified chlorophyll absorption ratio index/second modified triangular vegetation index (MCARI/MTVI2) and transformed chlorophyll absorption in reflectance index/optimized soil-adjusted vegetation index (TCARI/OSAVI), when compared on an object basis. No correlations between radar backscattering at any polarization and the normalized difference vegetation index (NDVI) were observed.  相似文献   

9.
Leaf area index (LAI) is among the vegetation parameters that play an important role in climate, hydrological and ecological studies, and is used for assessing growth and expansion of vegetation. The main objective of this study was to develop a methodology to map the LAI distribution of birch trees (Betula pendula) in peatland ecosystems using field-based instruments and airborne-based remote-sensing techniques. The developed mapping method was validated using field-based LAI measurements using the LAI-2000 instrument. First vegetation indices, including simple ratio (SR), normalized difference vegetation index (NDVI), and reduced simple ratio (RSR), were derived from HyMap data and related to ground-based measurements of LAI. LAI related better with RSR (R2 = 0.68), followed by NDVI (R2 = 0.63) and SR (R2 = 0.58), respectively. Areas with birch were identified using Spectral Angle Mapper (SAM) to classify the image into 11 end members of dominant species including bare soil and open water. Next, the relationship between LAI and RSR was applied to areas with birch, yielding a birch LAI map. Comparison of the map of the birch trees and field-based LAI data was done using linear regression, yielding an R2 = 0.38 and an RMSE = 0.25, which is fairly accurate for a structurally highly diverse field situation. The method may prove an invaluable tool to monitor tree encroachment and assess tree LAI in these remote and poorly accessible areas.  相似文献   

10.
Leaf area index (LAI) is a key vegetation biophysical parameter and is extensively used in modelling of phenology, primary production, light interception, evapotranspiration, carbon, and nitrogen dynamics. In the present study, we attempt to spatially characterize LAI for natural forests of Western Ghats India, using ground based and Landsat-8 Operational Land Imager (OLI) sensor satellite data. For this, 41 ground-based LAI measurements were carried out across a gradient of tropical forest types, viz. dry, moist, and evergreen forests using LAI-2200 plant canopy analyser, during the month of March 2015. Initially, measured LAI values were regressed with 15 spectral variables, including nine spectral vegetation indices (SVIs) and six Landsat-8 surface reflectance (ρ) variables using univariate correlation analysis. Results showed that the red (ρred), near-infrared (ρNIR), shortwave infrared (ρSWIR1, ρSWIR2) reflectance bands (R2 > 0.6), and all SVIs (R2 > 0.7) except simple ratio (SR) have the highest and second highest coefficient of determination with ground-measured LAI. In the second step, to select significant (high R2, low root mean square error (RMSE), and p-level < 0.05) SVIs to determine the best representative model, stepwise multiple linear regression (SMLR) was implemented. The results indicate that the SMLR model predicted LAI with better coefficient of determination (R2 = 0.83, RMSE = 0.78) using normalized difference vegetation index, enhanced vegetation index, and soil-adjusted vegetation index variables compared to the univariate approach. The predicted SMLR model was used to estimate a spatial map of LAI. It is desirable to evaluate the stability and potentiality of regional LAI models in natural forest ecosystems against the operationally accepted Moderate Resolution Imaging Spectroradiometer (MODIS) global LAI product. To do this, the Landsat-8 pixel-based LAI map was resampled to 1 km resolution and compared with the MODIS derived LAI map. Results suggested that Landsat-8 OLI-based VIs provide significant LAI maps at moderate resolution (30 m) as well as coarse resolution (1 km) for regional climate models.  相似文献   

11.
ABSTRACT

The complex, dynamic and narrow boundaries between vegetation types make wetland mapping challenging. Hereafter the case study of the Hamoun-e-Hirmand wetland is considered by analysing eight Synthetic Aperture Radar (SAR) Images acquired in dry and wet periods with three wavelengths (X-band ~ 3 cm, C-band ~ 6 cm, and L-band ~ 25 cm), three polarizations (HH, VV and VH), and four incidence angles (22°, 30°, 34° and 53°). Then, the Support Vector Machine (SVM) classification method was applied to classify TerraSAR-X, Sentinel-1, and ALOS-PALSAR images. The final wetland land cover map was created by combining the classification results obtained from each sensor. In the case in question, results show that TerraSAR-X (X-band, HH-53°) and Sentinel-1 data (C-band, VV-34°) were useful for determining the flooded vegetation area in the wet period. This is crucial for the conservation of water bird habitats since flooded vegetation is an ideal environment for the nesting and feeding of water birds. PALSAR data (L-band in both HH and VH polarizations, 30°) were capable of separating the classes of vegetation density in the wetland. In the dry period, Sentinel-1 (VV and VH, 34°) and TerraSAR-X (HH, 22° and 53°) had higher potential in land cover mapping than PALSAR (HH and VH, 30°). Based on these results, Sentinel-1 in VV and VH provides the highest ability to discriminate between dry and green plants. TerraSAR-X is better for separating meadow and bare land. The results obtained in this paper can reduce the ambiguity in selecting satellite data for wetland studies. The results can also be used to produce more accurate data from satellite images and to facilitate wetland investigation, conservation and restoration.  相似文献   

12.
Abstract

Radar images were assessed to determine the backscatter characteristics of basaltic lava flows of predominantly pahoehoe textures and the ability to detect fissure vents. The images were obtained from synthetic aperture side-looking airborne radar systems—X-band HH, X-band HV, L-band HH and L-band H V. Smooth, collapsed blisters of shelly pahoehoe have weak returns in all four radar images. These returns are identical to those from pahoehoe surfaces covered with smooth mantles of windblown sediments. Hummocky pahoehoe flows have strong backscatter in all four images, most likely due to the large range in surface roughness causing multiple scattering at both radar wavelengths. Aa lava flows show the greatest variation in backscatter intensities—strong XHH, weak XHV, strong LHH and very strong LHV returns. This variation is due to an increase in multiple scattering at the L-band scale. Although smooth and rough surface textures can be differentiated in the radar images, there are constraints in tracing textural changes back to a particular fissure vent, in part because near-vent flows do not have unique radar signatures. Eruptive fissures are detectable in the radar images by virtue of associated parallel spatter ramparts which have diagnostic, strong backscatter in the X-band images that are in contrast to the weak backscatter of the surrounding shelly pahoehoe lava. However, spatter ramparts are not delineated in the L-band images. The centimetre-scale relief of the agglutinate spatter may cause scattering of the X-band energy more than the L-band energy. Although the structures are several metres high, the look directions for both imaging systems are approximately parallel to the trend of the ramparts. The rampart walls do not serve as reflectors. Such findings emphasize the importance of look direction in the use of radar images to characterize terrains.  相似文献   

13.
Leaf Area Index (LAI) is an important biophysical parameter necessary to infer vegetation vigour, seasonal vegetation variability and different physiological and biochemical processes of vegetation. Gap fraction analysis has been carried out to estimate plot‐wise LAI. Tropical dry deciduous forests of the study area can be categorized into two prominent phases—growing and senescent phases. Efforts have been made to observe the relationship between ground based LAI values and satellite derived parameters, such as radiance values and also different vegetation indices, namely the Normalized Difference Vegetation Index (NDVI), maximum, minimum, amplitude, sum and radiance NDVI values for both the phases. Multi‐temporal IRS 1C WiFS data have been used. WiFS provides information in two bands: red (0.62–0.68 µm) and near‐infrared (0.77–0.86 µm). All the images from the representative months have been corrected radiometrically and geometrically. NDVI values have been derived for all the representative months. Among various parameters maximum NDVI values showed better relationships with LAI for both the phases. For the growing phase R 2 (coefficient of determination) was 0.79, whereas for the senescent phase it was 0.48. These empirical relationships have been used to estimate LAI at a regional level. The LAI estimate for growing and senescent phases ranged from <1 to 4.25.  相似文献   

14.
Disturbed forests may need decades to reach a mature stage and optically-based vegetation indices are usually poorly suited for monitoring purposes due to the rapid saturation of the signal with increasing canopy cover. Spaceborne synthetic aperture radar (SAR) data provide an alternate monitoring approach since the backscattered microwave energy is sensitive to the vegetation structure. Images from two regions in Spain and Alaska were used to analyze SAR metrics (cross-polarized backscatter and co-polarized interferometric coherence) from regrowing forests previously affected by fire. TerraSAR-X X-band backscatter showed the lowest sensitivity to forest regrowth, with the average backscatter increasing by 1-2 dB between the most recent fire scar and the unburned forest. Increased sensitivity (around 3-4 dB) was observed for C-band Envisat Advanced Synthetic Aperture (ASAR) backscatter. The Advanced Land Observing Satellite (ALOS) Phased Array-type L-band Synthetic Aperture Radar (PALSAR) L-band backscatter presented the highest dynamic range from unburned to recently burned forests (approximately 8 dB). The interferometric coherence showed low sensitivity to forest regrowth at all SAR frequencies. For Mediterranean forests, five phases of forest regrowth were discerned whereas for boreal forest, up to four different regrowth phases could be discerned with L-band SAR data. In comparison, the Normalized Difference Vegetation Index (NDVI) provided reliable differentiation only for the most recent development stages. The results obtained were consistent in both environments.  相似文献   

15.
In Queensland, Australia, forest areas are discriminated from non-forest by applying a threshold (∼ 12%) to Landsat-derived Foliage Projected Cover (FPC) layers (equating to ∼ 20% canopy cover), which are produced routinely for the State. However, separation of woody regrowth following agricultural clearing cannot be undertaken with confidence, and is therefore not mapped routinely by State Agencies. Using fully polarimetric C-, L- and P-band NASA AIRSAR and Landsat FPC data for forests and agricultural land near Injune, central Queensland, we corroborate that woody regrowth dominated by Brigalow (Acacia harpophylla) cannot be discriminated using either FPC or indeed C-band data alone, because the rapid attainment of a canopy cover leads to similarities in both reflectance and backscatter with remnant forest. We also show that regrowth cannot be discriminated from non-forest areas using either L-band or P-band data alone. However, mapping can be achieved by thresholding and intersecting these layers, as regrowth is unique in supporting both a high FPC (> ∼ 12%) and C-band SAR backscatter (> ~ − 18 dB at HV polarisation) and low L-band and P-band SAR backscatter (e.g. < =∼ 14 dB at L-band HH polarisation). To provide a theoretical explanation, a wave scattering model based on that of Durden et al. [Durden, S.L., Van Zyl, J.J. & Zebker, H.A. (1989). Modelling and observation of radar polarization signature of forested areas. IEEE Trans. Geoscience and Remote Sensing, 27, 290-301.] was used to demonstrate that volume scattering from leaves and small branches in the upper canopy leads to increases in C-band backscattering (particularly HV polarisations) from regrowth, which increases proportionally with FPC. By contrast, low L-band and P-band backscatter occurs because of the lack of double bounce interactions at co-polarisations (particularly HH) and volume scattering at HV polarisation from the stems and branches, respectively, when their dimensions are smaller than the wavelength. Regrowth maps generated by applying simple thresholds to both FPC and AIRSAR L-band data showed a very close correspondence with those mapped using same-date 2.5 m Hymap data and an average 73.7% overlap with those mapped through time-series comparison of Landsat-derived land cover classifications. Regrowth mapped using Landsat-derived FPC from 1995 and JER-1 SAR data from 1994-1995 also corresponded with areas identified within the time-series classification and true colour stereo photographs for the same period. The integration of Landsat FPC and L-band SAR data is therefore expected to facilitate regrowth mapping across Queensland and other regions of Australia, particularly as Japan's Advanced Land Observing System (ALOS) Phase Arrayed L-band SAR (PALSAR), to be launched in 2006, will observe at both L-band HH and HV polarisations.  相似文献   

16.
Since optical and microwave sensors respond to very different target characteristics, their role in crop monitoring can be viewed as complementary. In particular, the all‐weather capability of Synthetic Aperture Radar (SAR) sensors can ensure that data gaps that often exist during monitoring with optical sensors are filled. There were three Landsat Thematic Mapper (TM) satellite images and three Envisat Advanced Synthetic Aperture Radar (ASAR) satellite images acquired from reviving stage to milking stage of winter wheat. These data were successfully used to monitor crop condition and forecast grain yield and protein content. Results from this study indicated that both multi‐temporal Envisat ASAR and Landsat TM imagery could provide accurate information about crop conditions. First, bivariate correlation results based on the linear regression of crop variables against backscatter suggested that the sensitivity of ASAR C‐HH backscatter image to crop or soil condition variation depends on growth stage and time of image acquisition. At the reviving stage, crop variables, such as biomass, Leaf Area Index (LAI) and plant water content (PWC), were significantly positively correlated with C‐HH backscatter (r = 0.65, 0.67 and 0.70, respectively), and soil water content at 5 cm, 10 cm and 20 cm depths were correlated significantly with C‐VV backscatter (r = 0.44, 0.49 and 0.46, respectively). At booting stage, only a significant and negative correlation was observed between biomass and C‐HH backscatter (r = ?0.44), and a saturation of the SAR signal to canopy LAI could explain the poor correlation between crop variables and C‐HH backscatter. Furthermore, C‐HH backscatter was correlated significantly with soil water content at booting and milking stage. Compared with ASAR backscatter data, the multi‐spectral Landsat TM images were more sensitive to crop variables. Secondly, a significant and negative correlation between grain yield and ASAR C‐HH & C‐VV backscatter at winter wheat booting stage was observed (r = ?0.73 and ?0.55, respectively) and a yield prediction model with a correlation coefficient of 0.91 was built based on the Normalized Difference Water Index (NDWI) data from Landsat TM on 17 April and ASAR C‐HH backscatter on 27 April. Finally, grain protein content was found to be correlated significantly with ASAR C‐HH backscatter at milking stage (r = ?0.61) and with Structure Insensitive Pigment Index (SIPI) data from Landsat TM at grain‐filling stage (r = 0.53), and a grain protein content prediction model with a correlation coefficient of 0.75 was built based on the C‐HH backscatter and SIPI data.  相似文献   

17.
NEWS SECTION     
Abstract

The action balance equation is solved numerically using the method of characteristics. The algorithm can handle any functional form of the current velocity and the source function. It therefore allows a comparison of the hydrodynamic parts of the models of Alpers and Hennings (1984), Shuchman el al. (1985) and Holliday et al. (1986,1987), all describing the imaging mechanism of mapping bottom topography with side-looking airborne radar (SLAR) and synthetic aperture radar (SAR). The effects of advection and second-order terms, neglected in the original work of Alpers and Hennings (1984), are included and studied. It is shown that advection is important, notably at L-band for features smaller than 1 km, such as sand waves, while the second-order terms shift the modulation of the wave spectrum upward. All models studied give similar results for L-band and X-band, showing that the dependence of the relaxation rate on wave number and wind speed variations due to variations in current velocity has only a small influence. The predicted modulations at L-band are of the order of 10 per cent, in agreement with the Seasat data. At X-band, however, the predicted modulations are an order of magnitude smaller than at L-band. This disagrees with the experimental data which seem to indicate that modulations at X-band are of the same order of magnitude as those at L-band. Advection is important for the positioning of modulations in the radar backscatter relative to the bottom topography. However, the positional accuracy of existing experimental data is not good enough to allow comparison with theoretical predictions.  相似文献   

18.
Abstract

In recent years, remote sensing and crop growth simulation models have become increasingly recognized as potential tools for growth monitoring and yield estimation of agricultural crops. In this paper, a methodology is developed to link remote sensing data with a crop growth model for monitoring crop growth and development. The Cloud equations for radar backscattering and the optical canopy radiation model EXTRAD were linked to the crop growth simulation model SUCROS: SUCROS-Cloud-EXTRAD. This combined model was initialized and re-parameterized to fit simulated X-band radar backscattering and/or optical reflectance values, to measured values. The developed methodology was applied for sugar beet. The simulated canopy biomass after initialization and re-parameterization was compared with simulated canopy biomass with SUCROS using standard input, and with measured biomass in the field, for 11 fields in different years and different locations. The seasonal-average error in simulated canopy biomass was smaller with the initialized and re-parameterized model (225-475 kg ha?1), than with SUCROS using standard input (390-700 kg ha?1), with ‘end-of-season’ canopy biomass values between 5500 and 7000kgha?1. X-band radar backscattering and optical reflectance data were very effective in the initialization of SUCROS. The radar backscattering data further adjusted SUCROS only during early crop growth (exponential growth), whereas optical data still adjusted SUCROS until late in the growing season (at high levels of leaf area index (LAI), 3-5).  相似文献   

19.
Vegetation phenology tracks plants' lifecycle events, revealing the response of vegetation to global climate changes. Changes in vegetation phenology also influence fluxes of carbon, water, and energy at local and global scales. In this study, we analysed a time series of Ku-band radar backscatter measurements from the SeaWinds scatterometer on board the Quick Scatterometer (QuickSCAT) to examine canopy phenology from 2003 to 2005 across China. The thaw season SeaWinds backscatter and Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) time series were significantly correlated in 20 of the 22 sites (p < 0.05). A weighted curve-fitting method was applied to detect the start of season and end of season from both data sets. The SeaWinds scatterometer generally detected earlier timing of spring leaf-out and later fall senescence than the MODIS LAI data sets. The SeaWinds backscatter detected phenological metrics in 75.85% of mainland China. Similar spatial patterns were observed from the SeaWinds backscatter and MODIS LAI time series; however, the average standard deviation of the scatterometer-detected metrics was lower than that of MODIS LAI products. Overall, the phenological information from the SeaWinds scatterometer could provide an alternative view on the growth dynamics of land-surface vegetation.  相似文献   

20.
Soil moisture retrieval is often confounded by the influence of vegetation and surface roughness on the backscattered radar signal in vegetated areas. In this study, a semi-empirical methodology is proposed to retrieve soil moisture in prairie areas. The effect of vegetation is eliminated by the ratio vegetation method and water cloud model (WCM), respectively. The conditions of vegetation are characterized by leaf area index (LAI), vegetation water content (VWC), normalized difference vegetation index (NDVI), and enhanced vegetation index (EVI), respectively. To remove the dependence on surface roughness, the dielectric constant is explicitly expressed as the function of co-polarization backscattering coefficients and sensor parameters based on the Dubois model. The ground measurements and satellite data collected from the Ruoergai and Wutumeiren prairies of China allow for validating the feasibility and effectiveness of the proposed methodology. From the perspective of soil moisture retrieval accuracy, the ratio vegetation method performs better than WCM. In the Ruoergai prairie, the best soil moisture retrieval result is obtained when EVI is used, with correlation coefficient (r) and root mean square error (RMSE) of 0.87 and 3.50 vol.%, respectively. While in the Wutumeiren prairie, the lowest retrieval error is obtained when LAI is used, with r and RMSE values of 0.79 and 5.73 vol.%, respectively. These results demonstrate that the Dubois model has a potential for enhancing soil moisture retrieval in prairie areas using synthetic aperture radar (SAR) and optical data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号