首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
同一卫星的全色与多光谱图像由于拍摄时间不同、传感器视角有差异等原因,存在复杂的非刚性变形.针对上述问题,提出一种基于特征约束与光流场方法的配准方法.光流场方法是基于物理模型的配准方法,可以处理复杂的非刚性变形;特征约束可以提高配准精度;采用网格分割的方法分配特征点的光流场,可以提高配准的鲁棒性.以资源三号卫星图像为实验数据,实验结果表明,该方法能够取得较高精度和较好鲁棒性.  相似文献   

2.
以遥感图像为研究对象论述了一种基于特征点的图像匹配算法在遥感图像匹配与拼接中的应用及改进。在提取图像特征点上,尺度不变特征转换SIFT算法能够对缩放、旋转、仿射的图像保持尺度不变特性。对于提取出的SIFT特征点,采用改进的随机抽样一致性RANSAC方法进行提纯,剔除多余的特征点,缩短匹配时间。实验证明,该算法有效提高了遥感图像匹配的效率和准确性。  相似文献   

3.
提出了一种新型全自动稳健的遥感图像配准算法。首先,在图像二维平面空间和尺度空间中同时检测局部极值作为特征点,并在特征点邻域提取局部不变特征描述子一尺度不变特征变换(SIFT)。然后,利用距离测度进行SIFT特征匹配得到初步的匹配集合。最后,运用稳健的随机采样一致性(RANSAC)算法将匹配点集划分为内点和外点,在内点域上精确地估计出图像变换模型。实验利用仿真数据测试了SIFT特征的可重复性和可匹配性,利用卫星图像验证了该自动配准算法的有效性和稳健性。  相似文献   

4.
Object-based image analysis has proven its potentials for remote sensing applications, especially when using high-spatial resolution data. One of the first steps of object-based image analysis is to generate homogeneous regions from a pixel-based image, which is typically called the image segmentation process. This paper introduces a new automatic Region-based Image Segmentation Algorithm based on k-means clustering (RISA), specifically designed for remote sensing applications. The algorithm includes five steps: k-means clustering, segment initialization, seed generation, region growing, and region merging. RISA was evaluated using a case study focusing on land-cover classification for two sites: an agricultural area in the Republic of South Africa and a residential area in Fresno, CA. High spatial resolution SPOT 5 and QuickBird satellite imagery were used in the case study. RISA generated highly homogeneous regions based on visual inspection. The land-cover classification using the RISA-derived image segments resulted in higher accuracy than the classifications using the image segments derived from the Definiens software (eCognition) and original image pixels in combination with a minimum-distance classifier. Quantitative segmentation quality assessment using two object metrics showed RISA-derived segments successfully represented the reference objects.  相似文献   

5.
Image registration is the process of geometrically aligning one image to another image of the same scene taken from different viewpoints at different times or by different sensors. It is an important image processing procedure in remote sensing and has been studied by remote sensing image processing professionals for several decades. Nevertheless, it is still difficult to find an accurate, robust, and automatic image registration method, and most existing image registration methods are designed for a particular application. High-resolution remote sensing images have made it more convenient for professionals to study the Earth; however, they also create new challenges when traditional processing methods are used. In terms of image registration, a number of problems exist in the registration of high-resolution images: (1) the increased relief displacements, introduced by increasing the spatial resolution and lowering the altitude of the sensors, cause obvious geometric distortion in local areas where elevation variation exists; (2) precisely locating control points in high-resolution images is not as simple as in moderate-resolution images; (3) a large number of control points are required for a precise registration, which is a tedious and time-consuming process; and (4) high data volume often affects the processing speed in the image registration. Thus, the demand for an image registration approach that can reduce the above problems is growing. This study proposes a new image registration technique, which is based on the combination of feature-based matching (FBM) and area-based matching (ABM). A wavelet-based feature extraction technique and a normalized cross-correlation matching and relaxation-based image matching techniques are employed in this new method. Two pairs of data sets, one pair of IKONOS panchromatic images from different times and the other pair of images consisting of an IKONOS panchromatic image and a QuickBird multispectral image, are used to evaluate the proposed image registration algorithm. The experimental results show that the proposed algorithm can select sufficient control points semi-automatically to reduce the local distortions caused by local height variation, resulting in improved image registration results.  相似文献   

6.
卫星遥感影像提取村庄区域在地理和气象领域均有十分重要的意义.针对卫星遥感影像的特点,提出了一种村庄区域提取方法.利用改进的去雾算法对卫星遥感影像进行预处理,通过遥感卫星影像的颜色特征实现分割,结合村庄区域分布特点进行去噪处理,实现卫星遥感影像村庄区域的提取.实验结果表明:该算法能够对卫星遥感图像中不同类型村庄区域进行提取,且提取准确率高,可以应用于地理以及气象等领域.  相似文献   

7.
Automatic registration of multimodal remote sensing images, which is a critical prerequisite in a range of applications (e.g. image fusion, image mosaic, and image analysis), continues to be a fundamental and challenging problem. In this paper, we propose a novel extended phase correlation algorithm based on Log-Gabor filtering (LGEPC) for the registration of images with nonlinear radiometric differences and geometric differences (e.g. rotation, scale, and translation). Our algorithm focuses on two problems that the traditional extended phase correlation algorithms cannot well handle: 1) significant nonlinear radiometric differences and 2) large-scale differences between image pairs. After an over-complete multi-scale atlas space of the original image is built based on the filtered magnitudes obtained by using Log-Gabor filters with different central frequencies, the phase correlation of the single scale images is extended by LGEPC to atlases phase correlation, which is conducive to solving the problem of large scale and rotation differences between the image pairs. Subsequently, LGEPC eliminates the interface of the significant nonlinear radiometric differences by superimposing multi-scale geometric structural spectra and carrying out the phase correlation module, so that the translation can be well determined. Our experiments on synthetic images demonstrated the rationality and effectiveness of LGEPC, and the experiments on a variety of multimodal images confirmed that LGEPC can ideally achieve pixel-wise registration accuracy for multimodal image pairs that conform to the similarity transformation model.  相似文献   

8.
针对直接利用互信息进行图像配准存在的误差和插值假象问题,结合图像的频谱特性提出了基于频域的互信息计算方法,引入退火的思想改进了梯度上升法,利用它迭代搜索互信息最大值,使用相关长度估算最佳参数域,使得参数初始化更接近于最大值。实验结果表明,该方法对于多谱段遥感图像,较之传统方法具有明显的收敛性和稳定性。  相似文献   

9.
基于SIFT的遥感图像配准方法   总被引:5,自引:0,他引:5  
针对多传感器遥感图像配准问题,改进了一种基于SIFT的图像自动配准方法.首先提取图像中适应尺度变化的局部不变特征点,提出了利用最近邻特征点距离与次近邻特征点距离之比的互对应约束得到初始匹配点对,然后利用RANSAC(Random Sample Concensus)算法删除误匹配特征点对.试验结果表明:该方法能够实现多传感器遥感图像和不同分辨率图像的自动配准.  相似文献   

10.
一种新的基于NSCT域的遥感图像增强算法   总被引:1,自引:0,他引:1  
针对图像增强处理中产生的伪Gibbs现象、清晰度差等问题,利用下采样轮廓波变换(NSCT)的平移不变性特点,来抑制伪Gibbs现象,同时把模糊对比度和空间频率相结合来处理NSCT系数,提高了增强后图像的清晰度。实验结果证实,该算法使得增强后图像的质量明显优于常用的增强算法,具有一定实践价值。  相似文献   

11.
针对灰度遥感图像具有噪声多、图像亮度均匀、边缘模糊等特点,提出了基于细胞神经网遥感图像边缘检测的新方法。该算法主要是利用细胞神经网先后对遥感图像进行图像滤波、灰度阈值化、膨胀腐蚀、边缘检测等模板操作。实验结果表明,与传统的Sobel和Canny边缘检测算法相比,本算法不仅能有效地去除噪声对边缘检测的影响,而且能够快速完整地提取图像边缘。  相似文献   

12.
针对遥感图像场景零样本分类算法中的空间类结构不一致以及域偏移问题,提出基于Sammon嵌入和谱聚类方法结合的直推式遥感图像场景零样本分类算法。首先,基于Sammon嵌入算法修正语义特征空间类原型表示,使其与视觉特征空间类原型结构对齐;其次,借助结构迁移方法得到视觉特征空间测试类原型表示;最后,针对域偏移问题,采用谱聚类方法修正视觉特征空间测试类原型,以适应测试类样本分布特点,提高场景零样本分类准确度。在两个遥感场景集(UCM和AID)上分别获得52.89%和55.93%的最高总体分类准确度,均显著优于对比方法。实验结果表明,通过显著降低视觉特征空间和语义特征空间的场景类别结构不一致性,同时减轻了域偏移问题,可实现语义特征空间类结构知识到视觉特征空间的有效迁移,大幅提升遥感场景零样本分类的准确度。  相似文献   

13.
Feature matching, which refers to establishing reliable feature correspondences between two images of the same scene, is a critical prerequisite in a wide range of remote sensing tasks including environment monitoring, multispectral image fusion, image mosaic, change detection, map updating. In this paper, we propose a method for robust feature matching and apply it to the problem of remote sensing image registration. We start by creating a set of putative feature matches which can contain a number of unknown false matches, and then focus on mismatch removal. This is formulated as a robust regression problem, and we customize a robust estimator, namely the Gaussian field criterion, to solve it. The robust criterion can handle both linear and nonlinear image transformations. In the linear case, we use a general homography to model the transformation, while in the nonlinear case, the non-rigid functions located in a reproducing kernel Hilbert space are considered, and a regularization term is added to the objective function to ensure its well-posedness. Moreover, we apply a sparse approximation to the non-rigid transformation and reduce the computational complexity from cubic to linear. Extensive experiments on various natural and remote sensing images show the effectiveness of our approach, which is able to yield superior results compared to other state-of-the-art methods.  相似文献   

14.
群体智能算法的遥感图像处理研究   总被引:1,自引:0,他引:1  
针对传统图像增强方法缺乏适应性的缺点, 提出了一种用最优化过程进行图像增强的方法。首先对量子粒子群优化(quantum-behaved particle swarm optimization, QPSO)算法进行改进, 提出了一种实变参数量子粒子群优化(time varying parameters QPSO, QPSO-tp)算法。标准测试函数的实验结果表明, 改进后的算法在全局搜索能力和收敛精度上要优于原QPSO算法, 具有调节参数少、随机性更强等优点。然后将遥感灰度图像的非线性变换增强过程用最优化问题进行处理, 用QPSO-tp算法进行参数寻优。实验结果表明, 图像的增强效果得到了较大提高。  相似文献   

15.
传统模糊ISODATA(Fuzzy ISODATA,FISODATA)算法中,分裂-合并操作需人工选取阈值参数。而不适当的阈值往往使算法陷入局部极值,因而得到错误的类属数并最终影响图像分割结果。为此,在模糊集理论基础上提出一种改进的自适应FISODATA算法。该算法设计了自适应分裂-合并操作,即在每次分裂-合并后,根据该次计算结果改变参数阈值,解决了人为选取参数带来的诸多问题。利用该算法对模拟图像和真实IKONOS图像进行分割实验,均能得到良好的分割结果。  相似文献   

16.
针对数量激增、数据类型复杂的遥感影像,准确和具有普适性的分类是亟待解决的问题。提出一种轮转径向基函数神经网络模型应用于遥感影像的处理方法。通过对输入数据的特征变换,使特征总集变为多个子特征集,依据PCA(主成分分析)变换处理这些新的子特征集,将得到的系数用于改变训练样本,增加基分类器之间的差异度,提高分类精度。以扎龙湿地为研究对象将该算法与其他方法比较,结果显示本文方法能得到更准确的分类结果,而且具有较高的泛化精度以及较小的过学习现象。  相似文献   

17.

基于像素模糊?? 均值算法(FCM) 及其改进算法难以解决高分辨率遥感影像中地物目标光谱测度相似性减弱和几何噪声增大带来的分割难题, 提出一种基于区域的FCM算法. 该方法利用Voronoi 几何划分将影像域划分为子区域, 并用子区域拟合地物目标的几何形状. 在此基础上, 定义区域FCM目标函数, 通过迭代最小化该目标函数实现高分辨率遥感影像分割. 实验结果表明, 与基于像素的FCM和增强FCM方法相比, 所提出方法可以更加精确地实现高分辨率遥感影像分割.

  相似文献   

18.
传统的配准方法假定两幅图像之间的几何变形可以用一个统一的变换模型来描述,高分辨率遥感图像配准,尤其当图像的分辨率达到米级和亚米级时,地物高程因素产生的像点位移不容忽略,导致这些区域的变形与平坦区域不一致,难以找到一个统一的变换模型来描述整幅图像的变形。针对高分辨率图像配准中存在的实际问题,提出了一种基于多模型表示的配准方法。在初配准阶段,完成图像中大部分平坦区域的校正,建立整体模型;在精配准阶段,完成局部高程区域的校正,建立局部模型。实验结果表明:该方法是准确有效的。  相似文献   

19.
图像配准是遥感图像处理中的基本问题.本文针对多源多时相遥感影像的特点,提出了一种基于自适应尺度的渐进配准方法,在从粗到细的迭代配准过程中,可以通过上一次配准结果的几何定位误差来确定本次匹配的尺度,并按该尺度提取特征角点和特征邻域进行匹配,与常规金字塔渐进配准方法相比,减少了匹配次数,提高了配准效率.另外,特征提取和匹配过程中提出一种基于Harris-Laplace算法和相位相关算法的遥感影像配准算法,利用Harris-Laplace角点代替原始图像,能够综合区域和特征的优点,对亚像元偏移、旋转、尺度变化具有不变性,同时对对比度和灰度的变化不敏感,具有很强的抗噪性.在特征检测和匹配的过程中采用限定搜索区域、抽稀角点等多种优化策略来提高算法的性能.实验证明,算法具有很好的精度,对几何攻击具有很好的鲁棒性,该算法已经应用于CBERS-02B星3级数据的批量自动化生产,具有很好的应用效果.  相似文献   

20.
基于局部特征的遥感图像快速自动配准   总被引:1,自引:0,他引:1       下载免费PDF全文
针对图像处理领域中遥感图像的配准问题,提出一种基于图像局部特征的快速、自动配准方法。该方法选取具有良好尺度、旋转不变性以及精确特征点定位能力的SIFT局部特征,使用其特征向量间的欧氏距离作为相似性度量进行特征点匹配,并依据仿射变换误差准则去除奇异匹配特征点对,采用仿射变换的几何模型,实现了遥感图像的快速自动配准。实验结果表明,方法是高效、精确以及稳定的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号