首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In urban areas, spectral mixture analysis (SMA) is a common technique for deriving the fractions of land covers within a pixel and information on the distribution of impervious surfaces. This study examined how the selection of endmembers affected the quantification of impervious surfaces using TM and ASTER imagery. Multiple subsets of endmembers derived using (1) extreme pixels from a minimum noise fraction (MNF) transformation, and (2) a manual approach using a priori knowledge of the study area were analysed. Two data sets were used to assess accuracy: (1) simulated image data comprising unmixed and mixed pixels of 10 typical and spectrally different urban land covers, and (2) detailed data derived from high-resolution aerial photography. The dimensionality of the imagery limited the number of endmembers, and as a result, unmixed land covers were modelled using multiple endmembers and some cells had abundance values that summed to more than one or were negative. The land covers of red roofs and concrete were the largest contributors to the error in impervious surfaces. The Sequential Maximum Angle Convex Cone (SMACC) endmember model was also used to unmix the images; however, the larger number of endmembers did not resolve the use of multiple endmembers to model the unmixed land covers and the accuracy was similar to that using SMA. The relationship between the pervious fraction estimated using the vegetation endmember and the ground reference data was stronger than that for the impervious fraction, although the fraction was underestimated. The problems in modelling highly variable impervious surfaces with a limited number of endmembers suggest that in urban environments with substantial vegetation, modelling the vegetation component as the inverse of the impervious fraction may lead to improved results.  相似文献   

2.
In the urban environment both quality of life and surface biophysical processes are closely related to the presence of vegetation. Spectral mixture analysis (SMA) has been frequently used to derive subpixel vegetation information from remotely sensed imagery in urban areas, where the underlying landscapes are assumed to be composed of a few fundamental components, called endmembers. A critical step in SMA is to identify the endmembers and their corresponding spectral signatures. A common practice in SMA assumes a constant spectral signature for each endmember. In fact, the spectral signatures of endmembers may vary from pixel to pixel due to changes in biophysical (e.g. leaves, stems and bark) and biochemical (e.g. chlorophyll content) composition. This study developed a Bayesian Spectral Mixture Analysis (BSMA) model to understand the impact of endmember variability on the derivation of subpixel vegetation fractions in an urban environment. BSMA incorporates endmember spectral variability in the unmixing process based on Bayes Theorem. In traditional SMA, each endmember is represented by a constant signature, while BSMA uses the endmember signature probability distribution in the analysis. BSMA has the advantage of maximally capturing the spectral variability of an image with the least number of endmembers. In this study, the BSMA model is first applied to simulated images, and then to Ikonos and Landsat ETM+ images. BSMA leads to an improved estimate of subpixel vegetation fractions, and provides uncertainty information for the estimates. The study also found that the traditional SMA using the statistical means of the signature distributions as endmember signatures produces subpixel endmember fractions with almost the same and sometimes even better accuracy than those from BSMA except without uncertainty information for the estimates. However, using the modes of signature distributions as endmembers may result in serious bias in subpixel endmember fractions derived from traditional SMA.  相似文献   

3.
Abundant vegetation species and associated complex forest stand structures in moist tropical regions often create difficulties in accurately classifying land-use and land-cover (LULC) features. This paper examines the value of spectral mixture analysis (SMA) using Landsat Thematic Mapper (TM) data for improving LULC classification accuracy in a moist tropical area in Rondônia, Brazil. Different routines, such as constrained and unconstrained least-squares solutions, different numbers of endmembers, and minimum noise fraction transformation, were examined while implementing the SMA approach. A maximum likelihood classifier was also used to classify fraction images into seven LULC classes: mature forest, intermediate secondary succession, initial secondary succession, pasture, agricultural land, water, and bare land. The results of this study indicate that reducing correlation between image bands and using four endmembers improve classification accuracy. The overall classification accuracy was 86.6% for the seven LULC classes using the best SMA processing routine, which represents very good results for such a complex environment. The overall classification accuracy using a maximum likelihood approach was 81.4%. Another finding is that use of constrained or unconstrained solutions for unmixing the atmospherically corrected or raw Landsat TM images does not have significant influence on LULC classification performances when image endmembers are used in a SMA approach.  相似文献   

4.
Tethered balloon remote sensing platforms can be used to study radiometric issues in terrestrial ecosystems by effectively bridging the spatial gap between measurements made on the ground and those acquired via airplane or satellite. In this study, the Short Wave Aerostat-Mounted Imager (SWAMI) tethered balloon-mounted platform was utilized to evaluate linear and nonlinear spectral mixture analysis (SMA) for a grassland-conifer forest ecotone during the summer of 2003. Hyperspectral measurement of a 74-m diameter ground instantaneous field of view (GIFOV) attained by the SWAMI was studied. Hyperspectral spectra of four common endmembers, bare soil, grass, tree, and shadow, were collected in situ, and images captured via video camera were interpreted into accurate areal ground cover fractions for evaluating the mixture models. The comparison between the SWAMI spectrum and the spectrum derived by combining in situ spectral data with video-derived areal fractions indicated that nonlinear effects occurred in the near infrared (NIR) region, while nonlinear influences were minimal in the visible region. The evaluation of hyperspectral and multispectral mixture models indicated that nonlinear mixture model-derived areal fractions were sensitive to the model input data, while the linear mixture model performed more stably. Areal fractions of bare soil were overestimated in all models due to the increased radiance of bare soil resulting from side scattering of NIR radiation by adjacent grass and trees. Unmixing errors occurred mainly due to multiple scattering as well as close endmember spectral correlation. In addition, though an apparent endmember assemblage could be derived using linear approaches to yield low residual error, the tree and shade endmember fractions calculated using this technique were erroneous and therefore separate treatment of endmembers subject to high amounts of multiple scattering (i.e. shadows and trees) must be done with caution. Including the short wave infrared (SWIR) region in the hyperspectral and multispectral endmember data significantly reduced the Pearson correlation coefficient values among endmember spectra. Therefore, combination of visible, NIR, and SWIR information is likely to further improve the utility of SMA in understanding ecosystem structure and function and may help narrow uncertainties when utilizing remotely sensed data to extrapolate trace glas flux measurements from the canopy scale to the landscape scale.  相似文献   

5.
Endmember variability in Spectral Mixture Analysis: A review   总被引:9,自引:0,他引:9  
The composite nature of remotely sensed spectral information often masks diagnostic spectral features and hampers the detailed identification and mapping of targeted constituents of the earth's surface. Spectral Mixture Analysis (SMA) is a well established and effective technique to address this mixture problem. SMA models a mixed spectrum as a linear or nonlinear combination of its constituent spectral components or spectral endmembers weighted by their subpixel fractional cover. By model inversion SMA provides subpixel endmember fractions. The lack of ability to account for temporal and spatial variability between and among endmembers has been acknowledged as a major shortcoming of conventional SMA approaches using a linear mixture model with fixed endmembers. Over the past decades numerous efforts have been made to circumvent this issue. This review paper summarizes the available methods and results of endmember variability reduction in SMA. Five basic principles to mitigate endmember variability are identified: (i) the use of multiple endmembers for each component in an iterative mixture analysis cycle, (ii) the selection of a subset of stable spectral features, (iii) the spectral weighting of bands, (iv) spectral signal transformations and (v) the use of radiative transfer models in a mixture analysis. We draw attention to the high complementarities between the different techniques and suggest that an integrated approach is necessary to effectively address endmember variability issues in SMA.  相似文献   

6.
The spatio-temporal distribution of vegetation is a fundamental component of the urban environment that can be quantified using multispectral imagery. However, spectral heterogeneity at scales comparable to sensor resolution limits the utility of conventional hard classification methods with multispectral reflectance data in urban areas. Spectral mixture models may provide a physically based solution to the problem of spectral heterogeneity. The objective of this study is to examine the applicability of linear spectral mixture models to the estimation of urban vegetation abundance using Landsat Thematic Mapper (TM) data. The inherent dimensionality of TM imagery of the New York City area suggests that urban reflectance measurements may be described by linear mixing between high albedo, low albedo and vegetative endmembers. A three-component linear mixing model provides stable, consistent estimates of vegetation fraction for both constrained and unconstrained inversions of three different endmember ensembles. Quantitative validation using vegetation abundance measurements derived from high-resolution (2 m) aerial photography shows agreement to within fractional abundances of 0.1 for vegetation fractions greater than 0.2. In contrast to the Normalised Difference Vegetation Index (NDVI), vegetation fraction estimates provide a physically based measure of areal vegetation abundance that may be more easily translated to constraints on physical quantities such as vegetative biomass and evapotranspiration.  相似文献   

7.
Remote sensing technique has become the most efficient and common approach to estimate surface vegetation cover. Among various remote sensing algorithms, spectral mixture analysis (SMA) is the most common approach to obtain sub‐pixel surface coverage. In the SMA, spectral endmembers (the number of endmembers may vary), with invariant spectral reflectance across the whole image, are needed to conduct the mixture procedure. Although the nonlinear effect in quantifying vegetation spectral reflectance was noticed and sometimes addressed in the SMA analysis, the nonlinear effect in soil spectral reflectance is seldom discussed in the literature. In this paper, we investigate the effects of vegetation canopy on the inter‐canopy soil spectral reflectance via mathematical modelling and field measurements. We identify two mechanisms that lead to the difference between remotely sensed apparent soil spectral reflectance and actual soil spectral reflectance. One is a canopy blockage effect, leading to a reduced apparent soil spectral reflectance. The other is a canopy scattering effect, leading to an increased apparent soil spectral reflectance. Without correction, the first (second) mechanism causes an overestimated (underestimated) areal coverage of the low‐spectral‐reflectance endmember. The overall effect of canopy to soil, however, tends to overestimate fractional vegetation cover due to the relative significance of the canopy blockage effect, even though the two mechanisms vary with spectral wavelengths and spectral difference between different vegetation and soil. For the SMA of vegetated surface using multiple‐spectral remote sensing imagery (e.g., LandSat), it is recommended that infrared bands of low vegetation spectral reflectance (e.g. band 7) be first considered; if both visible and infrared bands are used, combination of bands 3, 4, and 5 is appropriate, while use of all six bands could overestimate fraction vegetation cover.  相似文献   

8.
Estimating impervious surface distribution by spectral mixture analysis   总被引:20,自引:0,他引:20  
Estimating the distribution of impervious surface, a major component of the vegetation-impervious surface-soil (V-I-S) model, is important in monitoring urban areas and understanding human activities. Besides its applications in physical geography, such as run-off models and urban change studies, maps showing impervious surface distribution are essential for estimating socio-economic factors, such as population density and social conditions. In this paper, impervious surface distribution, together with vegetation and soil cover, is estimated through a fully constrained linear spectral mixture model using Landsat Enhanced Thematic Mapper Plus (ETM+) data within the metropolitan area of Columbus, OH in the United States. Four endmembers, low albedo, high albedo, vegetation, and soil were selected to model heterogeneous urban land cover. Impervious surface fraction was estimated by analyzing low and high albedo endmembers. The estimation accuracy for impervious surface was assessed using Digital Orthophoto Quarterquadrangle (DOQQ) images. The overall root mean square (RMS) error was 10.6%, which is comparable to the digitizing errors of DOQQ images. Results indicate that impervious surface distribution can be derived from remotely sensed imagery with promising accuracy.  相似文献   

9.
A methodology is described for identifying and mapping floodplain habitats in a reach of the Amazon mainstream. A linear mixing approach was used to determine the fraction of three pure endmembers. This method was tested for two radiometrically rectified Landsat Thematic Mapper (TM) scenes and the proportions of endmembers were used to identify the following classes: (1) clear/mixed water; (2) turbid water; (3) flooded non-forest; (4) flooded forest; (5) human settlements and (6) aquatic vegetation. The results were compared to visually interpreted Landsat TM images.  相似文献   

10.
随着城市的快速发展,明确城市生物物理组成和动态变化成为一个重要的研究课题。遥感技术在监测城市组成和时空变化中起到了非常重要的作用。光谱混合分析(SMA)方法为城市环境的描述、城市发展模拟和环境影响分析提供了基础。本文以南京城市为例,结合ETM 遥感影像,利用归一化光谱混合分析方法来监测城市地表类型组成。具体就是通过对反射率进行归一化处理来消除纯净地表覆盖类型的光谱变异,从而提高组分端元的选取精度。然后选取了植被、不透地表和阴影三种组分,对归一化反射率图像使用限制的线性光谱混合分析来研究城市组成。最后对归一化前后的光谱混合分析结果进行了比较,证实了本方法可有效提高光谱混合分析的精度。  相似文献   

11.
中国正在经历快速地城市化过程,及时又准确地掌握城市化过程对我国社会经济发展具有重要的实际意义。以Landsat-TM和ETM+为主要数据源,通过多端元光谱混合分析法(MESMA)提取北京建成区不透水层的时空演变信息。在Ridd的V-I-S(植被—不透水层—土壤)概念模型框架下,基于最小噪音变换(MNF)将TM或ETM+的6个光谱波段转换成MNF空间,并定义4种端元光谱分别代表植被、高反射率地表、低反射率地表和土壤,同时构建北京建成区端元光谱数据库。然后在MATLAB软件包中实现MESMA模型程序,依次提取北京市6个时段的不透水层信息。研究结果表明:MESMA方法能够提高植被、土壤和不透水层提取精度,相对误差分别为14.6%、17.3%和11.9%。研究结论充分说明MESMA方法应用到一个时间序列的中分辨率多光谱遥感影像是非常有效的。MESMA光谱分解方法能高效实现北京城市动态变化和城市扩张的监测。  相似文献   

12.
The spatial and spectral variability of urban environments present fundamental challenges to deriving accurate remote sensing products for urban areas. Multiple endmember spectral mixture analysis (MESMA) is a technique that potentially addresses both challenges. MESMA models spectra as the linear sum of spectrally pure endmembers that vary on a per-pixel basis. Spatial variability is addressed by mapping sub-pixel components of land cover as a combination of endmembers. Spectral variability is addressed by allowing the number and type of endmembers to vary from pixel to pixel. This paper presents an application of MESMA to map the physical components of urban land cover for the city of Manaus, Brazil, using Landsat Enhanced Thematic Mapper (ETM+) imagery.We present a methodology to build a regionally specific spectral library of urban materials based on generalized categories of urban land-cover components: vegetation, impervious surfaces, soil, and water. Using this library, we applied MESMA to generate a total of 1137 two-, three-, and four-endmember models for each pixel; the model with the lowest root-mean-squared (RMS) error and lowest complexity was selected on a per-pixel basis. Almost 97% of the pixels within the image were modeled within the 2.5% RMS error constraint. The modeled fractions were used to generate continuous maps of the per-pixel abundance of each generalized land-cover component. We provide an example to demonstrate that land-cover components have the potential to characterize trajectories of physical landscape change as urban neighborhoods develop through time. Accuracy of land-cover fractions was assessed using high-resolution, geocoded images mosaicked from digital aerial videography. Modeled vegetation and impervious fractions corresponded well with the reference fractions. Modeled soil fractions did not correspond as closely with the reference fractions, in part due to limitations of the reference data. This work demonstrates the potential of moderate-resolution, multispectral imagery to map and monitor the evolution of the physical urban environment.  相似文献   

13.
We describe the production of a landform map of North Africa utilizing moderate resolution satellite imagery and a methodology that is applicable for sub-continental to global scale landform mapping. A mosaic of Moderate Resolution Imaging Spectroradiometer (MODIS) apparent surface reflectance imagery was compiled for Africa north of 10° N. Landform image endmembers were chosen to characterize ten different types of vegetated and unvegetated desert surfaces: alluvial complexes, dunes, dry and ephemeral lakes, open water, basaltic volcanoes and flows, mountains, regs, stripped, low-angle bedrock surfaces, sand sheets, and Sahelian vegetation. Multiple Endmember Spectral Mixture Analysis (MESMA) was applied to the MODIS mosaic to estimate landform and vegetation endmember fractions. The major landform in each MODIS pixel was identified based on the majority endmember fraction in two- or three-endmember models. Accuracy assessment was conducted using two data sources: the historic Landform Map of North Africa [Raisz, E. (1952). Landform Map of North Africa. Environmental Protection Branch, Office of the Quartermaster General.] and Landsat Thematic Mapper (TM) data. Comparison with the Raisz landform map gave an overall classification accuracy of 54% with significant confusion between alluvial surfaces and regs, and between sandy and clayey surfaces and dunes. A second validation using 20 Landsat images in a stratified sampling scheme gave a classification accuracy of 70%, with confusion between dunes and sand sheets. Both accuracy assessment schemes indicated difficulty in vegetation classification at the margin of the Sahel. A comparison with minimum distance and maximum likelihood supervised classifications found that the MESMA approach produced significantly higher classification accuracies. This digital landform map is of sufficiently high quality to form the basis for geomorphic studies, including parameterization of the surface in global and regional dust models.  相似文献   

14.
With rapid urban growth in recent years, understanding urban biophysical composition and dynamics becomes an important research topic. Remote sensing technologies introduce a potentially scientific basis for examining urban composition and monitoring its changes over time. The vegetation-impervious surface-soil (V-I-S) model, in particular, provides a foundation for describing urban/suburban environments and a basis for further urban analyses including urban growth modeling, environmental impact analysis, and socioeconomic factor estimation. This paper develops a normalized spectral mixture analysis (NSMA) method to examine urban composition in Columbus Ohio using Landsat ETM+ data. In particular, a brightness normalization method is applied to reduce brightness variation. Through this normalization, brightness variability within each V-I-S component is reduced or eliminated, thus allowing a single endmember representing each component. Further, with the normalized image, three endmembers, vegetation, impervious surface, and soil, are chosen to model heterogeneous urban composition using a constrained spectral mixture analysis (SMA) model. The accuracy of impervious surface estimation is assessed and compared with two other existing models. Results indicate that the proposed model is a better alternative to existing models, with a root mean square error (RMSE) of 10.1% for impervious surface estimation in the study area.  相似文献   

15.
Wildfire temperature retrieval commonly uses measured radiance from a middle infrared channel and a thermal infrared channel to separate fire emitted radiance from the background emitted radiance. Emitted radiance at shorter wavelengths, including the shortwave infrared, is measurable for objects above a temperature of 500 K. The spectral shape and radiance of thermal emission within the shortwave infrared can be used to retrieve fire temperature. Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data were used to estimate fire properties and background properties for the 2003 Simi Fire in Southern California, USA. A spectral library of emitted radiance endmembers corresponding to a temperature range of 500-1500 K was created using the MODTRAN radiative transfer model. A second spectral library of reflected solar radiance endmembers, corresponding to four vegetation types and two non-vegetated surfaces, was created using image spectra selected by minimum endmember average root mean square error (RMSE). The best fit combination of an emitted radiance endmember and a reflected solar radiance endmember was found for each spectrum in the AVIRIS scene. Spectra were subset to reduce the effects of variable column water vapor and smoke contamination over the fire. The best fit models were used to produce maps of fire temperature, fire fractional area, background land cover, land cover fraction, and RMSE. The highest fire temperatures were found along the fire front, and lower fire temperatures were found behind the fire front. Saturation of shortwave infrared channels limited modeling of the highest fire temperatures. Spectral similarity of land cover endmembers and smoke impacted the accuracy of modeled land cover. Sensitivity analysis of modeled fire temperatures revealed that the range of temperatures modeled within 5% of minimum RMSE was smallest between 750 and 950 K. Hyperspectral modeling of wildfire temperature and fuels has potential application for fire monitoring and modeling.  相似文献   

16.
近年来混合像元分解在城市地表组分监测与分析中的应用逐渐成为城市遥感的一个热点。纯像元的选取是混合像元分解过程中的重点和关键所在。以沿海城市厦门为研究对象,根据不同的土壤和不透水面纯像元选取规则,使用2组12种不同的纯像元选取方法对2007年1月8日TM影像进行混合像元分解,对分解结果的模型适宜度进行了比较,并使用2006年12月25日SPOT5高分辨率影像对分解结果的精度进行了比较和评估。结果表明:混合像元分解在纯像元选取时,S端元选取兼顾低反射率裸土和高反射率裸露基岩的纯像元可以整体提高分解的模型适宜度和分解精度;适度提高I分量纯像元中高反射率纯像元的比例有助于改善整体尤其是S、W分量的分解效果。  相似文献   

17.
A snow-cover mapping method accounting for forests (SnowFrac) is presented. SnowFrac uses spectral unmixing and endmember constraints to estimate the snow-cover fraction of a pixel. The unmixing is based on a linear spectral mixture model, which includes endmembers for snow, conifer, branches of leafless deciduous trees and snow-free ground. Model input consists of a land-cover fraction map and endmember spectra. The land-cover fraction map is applied in the unmixing procedure to identify the number and types of endmembers for every pixel, but also to set constraints on the area fractions of the forest endmembers. SnowFrac was applied on two Terra Moderate Resolution Imaging Spectroradiometer (MODIS) images with different snow conditions covering a forested area in southern Norway. Six experiments were carried out, each with different endmember constraints. Estimated snow-cover fractions were compared with snow-cover fraction reference maps derived from two Landsat Enhanced Thematic Mapper Plus (ETM+) images acquired the same days as the MODIS images. Results are presented for non-forested areas, deciduous forests, coniferous forests and mixed deciduous/coniferous forests. The snow-cover fraction estimates are enhanced by increasing constraints introduced to the unmixing procedure. The classification accuracy shows that 96% of the pixels are classified with less than 20% error (absolute units) on 7 May 2001 when all forested and non-forested areas are included. The corresponding figure for 4 May 2000 is 88%.  相似文献   

18.
Spatial and temporal resolution is essential for understanding the spatial and temporal characteristics and dynamics of wetland ecosystems. However, single satellite imagery with both high spatial resolution and high temporal frequency is currently unavailable. Instead, the development of a bi-sensor monitoring technique utilizing spatial details of middle-to-high resolution data and temporal details of coarse spatial resolution data is highly desirable. For the initial work on our time-series bi-sensor wetland mapping, the applicability of multiple endmember spectral mixture analysis (MESMA) using single-date bi-sensor imagery with different orbiting periods was investigated. Landsat-5 Thematic Mapper (TM) and Terra Moderate Resolution Image Spectrometer (MODIS) data were utilized in the Poyang Lake area in China and the Great Salt Lake area in the USA to examine three decisive elements in utilizing MESMA: (1) the method of optimal endmember selection; (2) the threshold between two- and three-endmember models; and (3) the treatment of shade fractions. As a result, we found that (1) the number of spectra for an endmember spectrum similar to other endmember spectra meeting the modelling restrictions of maximum and minimum land-cover fractions and root mean square error (RMSE) within a class (In_CoB), the number of spectra for an endmember spectrum similar to other endmember spectra meeting the modelling restrictions outside of a class (Out_CoB), the ratio of In_CoB to Out_CoB multiplied by the inverse number of spectra within the class (CoBI) and the endmember average RMSE (EAR) were optimal endmember selection methods for the TM maps, whereas CoBI, EAR and minimum average spectral angle (MASA) were optimal endmember selection methods for the MODIS maps; (2) the MODIS maps were more sensitive to change in the two- and three-endmember modelling thresholds than the TM maps; and (3) the addition of shade fractions to dark water fractions were an appropriate shade treatment. This research demonstrated how MESMA can be applied for multi-scale mapping of wetland ecosystems, how the difference in observation dates between the TM and MODIS data affects the agreement in land-cover fractions and how spectral similarity between dark water and shade affects the agreement in land-cover fractions.  相似文献   

19.
Spectral mixture analysis is probably the most commonly used approach among sub‐pixel analysis techniques. This method models pixel spectra as a linear combination of spectral signatures from two or more ground components. However, spectral mixture analysis does not account for the absence of one of the surface features or spectral variation within pure materials since it utilizes an invariable set of surface features. Multiple endmember spectral mixture analysis (MESMA), which addresses these issues by allowing endmembers to vary on a per pixel basis, was employed in this study to model Landsat ETM+ reflectance in the Phoenix metropolitan area. Image endmember spectra of vegetation, soils, and impervious surfaces were collected with the use of a fine resolution Quickbird image and the pixel purity index. This study employed 204 (3×17×4) total four‐endmember models for the urban subset and 96 (6×6×2×4) total five‐endmember models for the non‐urban subset to identify fractions of soil, impervious surface, vegetation and shade. The Pearson correlation between the fraction outputs from MESMA and reference data from Quickbird 60 cm resolution data for soil, impervious, and vegetation were 0.8030, 0.8632, and 0.8496 respectively. Results from this study suggest that the MESMA approach is effective in mapping urban land covers in desert cities at sub‐pixel level.  相似文献   

20.
In subarctic regions the ubiquitous presence of rock encrusting lichens compromises the ability to map the reflectance signatures of minerals from imaging spectrometer data. The use of lichen as an endmember in spectral mixture analysis (SMA) may overcome these limitations. Because lichens rarely completely occupy the Instantaneous Field of View (IFOV), it is difficult to define a lichen endmember from an image using visual or automated endmember extraction tools. Spectral similarity of various crustose/foliose lichen species in the short wave infrared (SWIR) suggests that spectral unmixing of rock and lichens may be successfully accomplished using a single lichen endmember for this spectral range. We report the use of a spectral normalization method to minimize differences in SWIR reflectance between five lichen species (U. torrefacta, R. bolanderi, R. geminatum, R. geographicum, A. cinerea). When the normalization is applied to reflectance spectra from 2000-2400 nm acquired for a lichen encrusted quartzite rock sample we show that only a single lichen endmember is required to account for the lichen contribution in the observed mixtures. In contrast, two such endmembers are required when the normalization is not applied to the reflectance data. We illustrate this point using examples where endmembers are extracted manually and automatically, and compare the SMA results against abundances estimated from digital photography. For both the reflectance and normalized reflectance data, SMA results correlate well (R2>0.9) with abundances estimated from digital photography. The use of normalized reflectance implies that any field/laboratory lichen spectrum can be selected as the lichen endmember for SMA of airborne/spaceborne imagery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号