首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The k-Nearest Neighbor (k-NN) technique has become extremely popular for a variety of forest inventory mapping and estimation applications. Much of this popularity may be attributed to the non-parametric, multivariate features of the technique, its intuitiveness, and its ease of use. When used with satellite imagery and forest inventory plot data, the technique has been shown to produce useful estimates of many forest attributes including forest/non-forest, volume, and basal area. However, variance estimators for quantifying the uncertainty of means or sums of k-NN pixel-level predictions for areas of interest (AOI) consisting of multiple pixels have not been reported. The primary objectives of the study were to derive variance estimators for AOI estimates obtained from k-NN predictions and to compare precision estimates resulting from different approaches to k-NN prediction and different interpretations of those predictions. The approaches were illustrated by estimating proportion forest area, tree volume per unit area, tree basal area per unit area, and tree density per unit area for 10-km AOIs. Estimates obtained using k-NN approaches and traditional inventory approaches were compared and found to be similar. Further, variance estimates based on different interpretations of k-NN predictions were similar. The results facilitate small area estimation and simultaneous and consistent mapping and estimation of multiple forest attributes.  相似文献   

2.
In this work, the results of above-ground biomass (AGB) estimates from Landsat Thematic Mapper 5 (TM) images and field data from the fragmented landscape of the upper reaches of the Heihe River Basin (HRB), located in the Qilian Mountains of Gansu province in northwest China, are presented. Estimates of AGB are relevant for sustainable forest management, monitoring global change, and carbon accounting. This is particularly true for the Qilian Mountains, which are a water resource protection zone. We combined forest inventory data from 133 plots with TM images and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) global digital elevation model (GDEM) V2 products (GDEM) in order to analyse the influence of the sun-canopy-sensor plus C (SCS+C) topographic correction on estimations of forest AGB using the stepwise multiple linear regression (SMLR) and k-nearest neighbour (k-NN) methods. For both methods, our results indicated that the SCS+C correction was necessary for getting more reliable forest AGB estimates within this complex terrain. Remotely sensed AGB estimates were validated against forest inventory data using the leave-one-out (LOO) method. An optimized k-NN method was designed by varying both mathematical formulation of the algorithm and remote-sensing data input, which resulted in 3000 different model configurations. Following topographic correction, performance of the optimized k-NN method was compared to that of the regression method. The optimized k-NN method (R2 = 0.59, root mean square error (RMSE) = 24.92 tonnes ha–1) was found to perform much better than the regression method (R2 = 0.42, RMSE = 29.74 tonnes ha–1) for forest AGB retrieval over this montane area. Our results indicated that the optimized k-NN method is capable of operational application to forest AGB estimates in regions where few inventory data are available.  相似文献   

3.
4.
This study was part of an interdisciplinary research project on soil carbon and phytomass dynamics of boreal and arctic permafrost landscapes. The 45 ha study area was a catchment located in the forest tundra in northern Siberia, approximately 100 km north of the Arctic Circle.The objective of this study was to estimate aboveground carbon (AGC) and assess and model its spatial variability. We combined multi-spectral high resolution remote sensing imagery and sample based field inventory data by means of the k-nearest neighbor (k-NN) technique and linear regression.Field data was collected by stratified systematic sampling in August 2006 with a total sample size of n = 31 circular nested sample plots of 154 m2 for trees and shrubs and 1 m2 for ground vegetation. Destructive biomass samples were taken on a sub-sample for fresh weight and moisture content. Species-specific allometric biomass models were constructed to predict dry biomass from diameter at breast height (dbh) for trees and from elliptic projection areas for shrubs.Quickbird data (standard imagery product), acquired shortly before the field campaign and archived ASTER data (Level-1B product) of 2001 were geo-referenced, converted to calibrated radiances at sensor and used as carrier data. Spectral information of the pixels which were located in the inventory plots were extracted and analyzed as reference set. Stepwise multiple linear regression was applied to identify suitable predictors from the set of variables of the original satellite bands, vegetation indices and texture metrics. To produce thematic carbon maps, carbon values were predicted for all pixels of the investigated satellite scenes. For this prediction, we compared the kNN distance-weighted classifier and multiple linear regression with respect to their predictions.The estimated mean value of aboveground carbon from stratified sampling in the field is 15.3 t/ha (standard error SE = 1.50 t/ha, SE% = 9.8%). Zonal prediction from the k-NN method for the Quickbird image as carrier is 14.7 t/ha with a root mean square error RMSE = 6.42 t/ha, RMSEr = 44%) resulting from leave-one-out cross-validation. The k-NN-approach allows mapping and analysis of the spatial variability of AGC. The results show high spatial variability with AGC predictions ranging from 4.3 t/ha to 28.8 t/ha, reflecting the highly heterogeneous conditions in those permafrost-influenced landscapes. The means and totals of linear regression and k-NN predictions revealed only small differences but some regional distinctions were recognized in the maps.  相似文献   

5.
This paper presents a novel method for differential diagnosis of erythemato-squamous disease. The proposed method is based on fuzzy weighted pre-processing, k-NN (nearest neighbor) based weighted pre-processing, and decision tree classifier. The proposed method consists of three parts. In the first part, we have used decision tree classifier to diagnosis erythemato-squamous disease. In the second part, first of all, fuzzy weighted pre-processing, which can improved by ours, is a new method and applied to inputs erythemato-squamous disease dataset. Then, the obtained weighted inputs were classified using decision tree classifier. In the third part, k-NN based weighted pre-processing, which can improved by ours, is a new method and applied to inputs erythemato-squamous disease dataset. Then, the obtained weighted inputs were classified via decision tree classifier. The employed decision tree classifier, fuzzy weighted pre-processing decision tree classifier, and k-NN based weighted pre-processing decision tree classifier have reached to 86.18, 97.57, and 99.00% classification accuracies using 20-fold cross validation, respectively.  相似文献   

6.
Text categorization refers to the task of assigning the pre-defined classes to text documents based on their content. k-NN algorithm is one of top performing classifiers on text data. However, there is little research work on the use of different voting methods over text data. Also, when a huge number of training data is available online, the response speed slows down, since a test document has to obtain the distance with each training data. On the other hand, min–max-modular k-NN (M3-k-NN) has been applied to large-scale text categorization. M3-k-NN achieves a good performance and has faster response speed in a parallel computing environment. In this paper, we investigate five different voting methods for k-NN and M3-k-NN. The experimental results and analysis show that the Gaussian voting method can achieve the best performance among all voting methods for both k-NN and M3-k-NN. In addition, M3-k-NN uses less k-value to achieve the better performance than k-NN, and thus is faster than k-NN in a parallel computing environment. The work of K. Wu and B. L. Lu was supported in part by the National Natural Science Foundation of China under the grants NSFC 60375022 and NSFC 60473040, and the Microsoft Laboratory for Intelligent Computing and Intelligent Systems of Shanghai Jiao Tong University.  相似文献   

7.

This study aims to identify the suitability of hybridizing the firefly algorithm (FA), genetic algorithm (GA), and particle swarm optimization (PSO) with two well-known data-driven models of support vector regression (SVR) and artificial neural network (ANN) to predict blast-induced ground vibration. Here, these combinations are abbreviated using FA–SVR, PSO–SVR, GA–SVR, FA–ANN, PSO–ANN, and GA–ANN models. In addition, a modified FA (MFA) combined with SVR model is also proposed in this study, namely, MFA–SVR. The feasibility of the proposed models is examined using a case study, located in Johor, Malaysia. Then, to provide an objective assessment of performances of the predictive models, their results were compared based on several well known and popular statistical criteria. According to the results, the MFA–SVR with the coefficient of determination (R2) of 0.984 and root mean square error (RMSE) of 0.614 was more accurate model to predict PPV than the PSO–SVR with R2 = 0.977 and RMSE = 0.725, the FA–SVR with R2 = 0.964 and RMSE = 0.923, the GA–SVR with R2 = 0.957 and RMSE = 1.016, the GA–ANN with R2 = 0.936 and RMSE = 1.252, the FA–ANN with R2 = 0.925 and RMSE = 1.368, and the PSO–ANN with R2 = 0.924 and RMSE = 1.366. Consequently, the MFA–SVR model can be sufficiently employed in estimating the ground vibration, and has the capacity to generalize.

  相似文献   

8.
9.
ABSTRACT

Aboveground biomass (AGB) of mangrove forest plays a crucial role in global carbon cycle by reducing greenhouse gas emissions and mitigating climate change impacts. Monitoring mangrove forests biomass accurately still remains challenging compared to other forest ecosystems. We investigated the usability of machine learning techniques for the estimation of AGB of mangrove plantation at a coastal area of Hai Phong city (Vietnam). The study employed a GIS database and support vector regression (SVR) to build and verify a model of AGB, drawing upon data from a survey in 25 sampling plots and an integration of Advanced Land Observing Satellite-2 Phased Array Type L-band Synthetic Aperture Radar-2 (ALOS-2 PALSAR-2) dual-polarization horizontal transmitting and horizontal receiving (HH) and horizontal transmitting and vertical receiving (HV) and Sentinel-2A multispectral data. The performance of the model was assessed using root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R2), and leave-one-out cross-validation. Usability of the SVR model was assessed by comparing with four state-of-the-art machine learning techniques, i.e. radial basis function neural networks, multi-layer perceptron neural networks, Gaussian process, and random forest. The SVR model shows a satisfactory result (R2 = 0.596, RMSE = 0.187, MAE = 0.123) and outperforms the four machine learning models. The SVR model-estimated AGB ranged between 36.22 and 230.14 Mg ha?1 (average = 87.67 Mg ha?1). We conclude that an integration of ALOS-2 PALSAR-2 and Sentinel-2A data used with SVR model can improve the AGB accuracy estimation of mangrove plantations in tropical areas.  相似文献   

10.
A novel classification method based on multiple-point statistics (MPS) is proposed in this article. The method is a modified version of the spatially weighted k-nearest neighbour (k-NN) classifier, which accounts for spatial correlation through weights applied to neighbouring pixels. The MPS characterizes the spatial correlation between multiple points of land-cover classes by learning local patterns in a training image. This rich spatial information is then converted to multiple-point probabilities and incorporated into the k-NN classifier. Experiments were conducted in two study areas, in which the proposed method for classification was tested on a WorldView-2 sub-scene of the Sichuan mountainous area and an IKONOS image of the Beijing urban area. The multiple-point weighted k-NN method (MPk-NN) was compared to several alternatives; including the traditional k-NN and two previously published spatially weighted k-NN schemes; the inverse distance weighted k-NN, and the geostatistically weighted k-NN. The classifiers using the Bayesian and Support Vector Machine (SVM) methods, and these classifiers weighted with spatial context using the Markov random field (MRF) model, were also introduced to provide a benchmark comparison with the MPk-NN method. The proposed approach increased classification accuracy significantly relative to the alternatives, and it is, thus, recommended for the identification of land-cover types with complex and diverse spatial distributions.  相似文献   

11.
Given a set S of m points stored on a reconfigurable mesh computer of size n×n, one point per processing element (PE). In this paper we present a parallel method for solving the k-Nearest Neighbor problem (k-NN). This method permits each point of S to know its k-NN (0<k<m). The corresponding algorithm requires that each PE must have 2k registers where it stores the (x,y) coordinates of its k-NN in a given order. This algorithm has a complexity of O(logh+k 2) times, where h is a maximal number of points within a row of the mesh. This complexity is reduced to O(k 2) times, using an appropriate procedure which demonstrates the power of the reconfiguration operations carried out by the processors, and the polymorphic properties of the mesh.  相似文献   

12.

Fly-rock caused by blasting is one of the dangerous side effects that need to be accurately predicted in open-pit mines. This study proposed a new technique to predict the distance of fly-rock based on an ensemble of support vector regression models (SVRs) and Lasso and elastic-net regularized generalized linear model (GLMNET), called SVRs–GLMNET. It was developed based on a combination of six SVR models and a GLMNET model. Accordingly, the dataset including 210 experimental data was divided into three parts, i.e., training, validating, and testing. Of the whole dataset, 70% was used for the development of the six SVR models first as the sub-models. Subsequently, 20% of the entire dataset (the validating dataset) was used to predict fly-rock based on the six developed SVR models. The predicted results from the six developed SVR models were used as the input variables to establish the GLMNET model (i.e., SVRs–GLMNET model). Finally, the remaining 10% of the dataset was used for testing the performance of the proposed SVRs–GLMNET model. A comparison and evaluation of the six developed SVR models and the proposed SVRs–GLMNET model were implemented based on five statistical criteria, such as mean absolute error (MAE), mean absolute percentage error (MAPE), root-mean-square error (RMSE), variance account for (VAF), and determination of correlation (R2). The results indicated that the proposed SVRs–GLMNET model provided the most dominant performance in predicting the distance of fly-rock caused by bench blasting in this study with an RMSE of 3.737, R2 of 0.993, MAE of 3.214, MAPE of 0.018, and VAF of 99.207. Whereas, the other models yielded poorer accuracy with RMSE of 7.058–12.779, R2 of 0.920–0.972, MAE of 3.438–7.848, MAPE of 0.021–0.055, and VAF of 90.538–97.003.

  相似文献   

13.
Baljeet  Ioanis  Janelle   《Computer Networks》2008,52(13):2582-2593
Target tracking is an important application for wireless sensor networks. One important aspect of tracking is target classification. Classification helps in selecting particular target(s) of interest. In this paper, we address the problem of classification of moving ground vehicles. The basis of classification are the audible signals produced by these vehicles. We present a distributed framework to classify vehicles based on features extracted from acoustic signals of vehicles. The main features used in our study are based on FFT (fast Fourier transform) and PSD (power spectral density). We propose three distributed algorithms for classification that are based on the k-nearest neighbor (k-NN) classification method. An experimental study has been conducted using real acoustic signals of different vehicles recorded in the city of Edmonton. We compare our proposed algorithms with a naive distributed implementation of the k-NN algorithm. Performance results reveal that our proposed algorithms are energy efficient, and thus suitable for sensor network deployment.  相似文献   

14.
In this study, we tested the effectiveness of stand age, multispectral optical imagery obtained from the Landsat 8 Operational Land Imager (OLI), synthetic aperture radar (SAR) data acquired by the Sentinel-1B satellite, and digital terrain attributes extracted from a digital elevation model (DEM), in estimating forest volume in 351 plots in a 1,498 ha Eucalyptus plantation in northern Minas Gerais state, Brazil. A Random Forest (RF) machine learning algorithm was used following the Principal Component Analysis (PCA) of various data combinations, including multispectr al and SAR texture variables and DEM-based geomorphometric derivatives. Using multispectral, SAR or DEM variables alone (i.e. Experiments (ii)–(iv)) did not provide accurate estimates of volume (RMSE (Root Mean Square Error) > 32.00 m3 ha?1) compared to predictions based on age since planting of Eucalyptus stands (Experiment (i)). However, when these datasets were individually combined with stand age (i.e. Experiments (v)–(vii)), the RF models resulted in better volume estimates than those obtained when using the individual multispectral, SAR and DEM datasets (RMSE < 28.00 m3 ha?1). Furthermore, a model that integrated the selected variables of these data with stand age (Experiment (viii)) improved volume estimation significantly (RMSE = 22.33 m3 ha?1). The large and increasing area of Eucalyptus forest plantations in Brazil and elsewhere suggests that this new approach to volume estimation has the potential to support Eucalyptus plantation monitoring and forest management practices.  相似文献   

15.

Piles are widely applied to substructures of various infrastructural buildings. Soil has a complex nature; thus, a variety of empirical models have been proposed for the prediction of the bearing capacity of piles. The aim of this study is to propose a novel artificial intelligent approach to predict vertical load capacity of driven piles in cohesionless soils using support vector regression (SVR) optimized by genetic algorithm (GA). To the best of our knowledge, no research has been developed the GA-SVR model to predict vertical load capacity of driven piles in different timescales as of yet, and the novelty of this study is to develop a new hybrid intelligent approach in this field. To investigate the efficacy of GA-SVR model, two other models, i.e., SVR and linear regression models, are also used for a comparative study. According to the obtained results, GA-SVR model clearly outperformed the SVR and linear regression models by achieving less root mean square error (RMSE) and higher coefficient of determination (R2). In other words, GA-SVR with RMSE of 0.017 and R2 of 0.980 has higher performance than SVR with RMSE of 0.035 and R2 of 0.912, and linear regression model with RMSE of 0.079 and R2 of 0.625.

  相似文献   

16.
Finding the nearest k objects to a query object is a fundamental operation for many data mining algorithms. With the recent interest in privacy, it is not surprising that there is strong interest in k-NN queries to enable clustering, classification and outlier-detection tasks. However, previous approaches to privacy-preserving k-NN have been costly and can only be realistically applied to small data sets. In this paper, we provide efficient solutions for k-NN queries for vertically partitioned data. We provide the first solution for the L (or Chessboard) metric as well as detailed privacy-preserving computation of all other Minkowski metrics. We enable privacy-preserving L by providing a practical approach to the Yao’s millionaires problem with more than two parties. This is based on a pragmatic and implementable solution to Yao’s millionaires problem with shares. We also provide privacy-preserving algorithms for combinations of local metrics into a global metric that handles the large dimensionality and diversity of attributes common in vertically partitioned data. To manage very large data sets, we provide a privacy-preserving SASH (a very successful data structure for associative queries in high dimensions). Besides providing a theoretical analysis, we illustrate the efficiency of our approach with an empirical evaluation.  相似文献   

17.
Methodology for long-term prediction of time series   总被引:2,自引:2,他引:2  
Antti  Jin  Nima  Yongnan  Amaury   《Neurocomputing》2007,70(16-18):2861
In this paper, a global methodology for the long-term prediction of time series is proposed. This methodology combines direct prediction strategy and sophisticated input selection criteria: k-nearest neighbors approximation method (k-NN), mutual information (MI) and nonparametric noise estimation (NNE). A global input selection strategy that combines forward selection, backward elimination (or pruning) and forward–backward selection is introduced. This methodology is used to optimize the three input selection criteria (k-NN, MI and NNE). The methodology is successfully applied to a real life benchmark: the Poland Electricity Load dataset.  相似文献   

18.
The static k-Nearest Neighbor (k-NN) method for localization has limitations in accuracy due to the fixed k value in the algorithm. To address this problem, and achieve better accuracy, we propose a new dynamic k-Nearest Neighbor (Dk-NN) method in which the optimal k value changes based on the topologies and distances of its nearest neighbors. The proposed method has been validated using the WLAN-fingerprint data sets collected at COEX, one of the largest convention centers in Seoul, Korea. The proposed method significantly reduced both the mean error distances and the standard deviations of location estimations, leading to a significant improvement in accuracy by ~ 23% compared to the cluster filtered k-NN (CFK) method, and ~ 17% compared to the k-NN (k = 1) method.  相似文献   

19.
We present parallel algorithms to construct binary trees with almost optimal weighted path length. Specifically, assuming that weights are normalized (to sum up to one) and error refers to the (absolute) difference between the weighted path length of a given tree and the optimal tree with the same weights, we present anO (logn)-time andn(log lognl logn)-EREW-processor algorithm which constructs a tree with error less than 0.18, andO (k logn log* n)-time andn-CREW-processor algorithm which produces a tree with error at most l/n k , and anO (k 2 logn)-time andn 2-CREW-processor algorithm which produces a tree with error at most l/n k . As well, we describe two sequential algorithms, anO(kn)-time algorithm which produces a tree with error at most l/n k , and anO(kn)-time algorithm which produces a tree with error at most . The last two algorithms use different computation models.The first author's research was supported in part by NSERC Research Grant 3053. A part of this work was done while the second author was at the University of British Columbia.  相似文献   

20.
A modified k-nearest neighbour (k-NN) classifier is proposed for supervised remote sensing classification of hyperspectral data. To compare its performance in terms of classification accuracy and computational cost, k-NN and a back-propagation neural network classifier were used. A classification accuracy of 91.2% was achieved by the proposed classifier with the data set used. Results from this study suggest that the accuracy achieved with this classifier is significantly better than the k-NN and comparable to a back-propagation neural network. Comparison in terms of computational cost also suggests the effectiveness of modified k-NN classifier for hyperspectral data classification. A fuzzy entropy-based filter approach was used for feature selection to compare the performance of modified and k-NN classifiers with a reduced data set. The results suggest a significant increase in classification accuracy by the modified k-NN classifier in comparison with k-NN classifier with selected features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号