共查询到20条相似文献,搜索用时 12 毫秒
1.
The timing and quantity of fertilizer and herbicide applications in agricultural systems are critical where maximizing vigour and yield is the ultimate goal. While fertilizers are applied to the soil to promote plant growth, herbicides are commonly used to control weeds in order to reduce the weeds’ competition for nutrients. Satellite imagery is frequently used to monitor agricultural activities and vegetation indices (VIs) are widely applied in temporal analysis of crop status. This study considers monitoring Landsat VIs for the period between 5 June and 27 October 2014 in agricultural systems under four different management treatments at the Kellogg Biological Station (KBS), in Michigan, USA. The results show that (1) fine-tuning conventional treatments by intense early herbicide applications in combination with no-tilled soil results in significantly higher VIs during the early growth stage, a more rapid maturity rate, and the highest crop yield; (2) nitrogen uptake from nitrate-based rather than from ammonium-based fertilizers might be more beneficial in terms of crop vigour and yield return; (3) organic treatments, with organic corn and no agricultural chemicals, keep higher VIs longer in the season at the cost of lower yield; and (4) genetically modified (GM) breeds under conventional or reduced-chemical treatments have synchronized early senescence. A positive correlation between VIs during the early growth stage and yield is observed for conventional no-till treatment (coefficient of determination, R2 = 0.70). The correlation becomes gradually weaker with each month from late June to October (29 June: R2 = 0.70; 16 August: R2 = 0.61; 17 September: R2 = 0.44; 27 October: R2 = 0.01). The analysis of variance (ANOVA)–Tukey–Kramer approach suggests significant differences in VIs between organic and GM corn (treated conventionally or with reduced chemicals) for the preharvest season (27 October 2014). The leave-out-one cross-validation analysis confirms the predictive accuracy of the model (mean square error (MSE) = 0.0014). The rapid evolution of herbicide-resistant weeds requires constant refinement of chemical inputs to agricultural systems, thus making the monitoring of (Landsat) VIs important in the years to come. 相似文献
2.
Eyüp Selim Köksal 《International journal of remote sensing》2013,34(23):7029-7043
Two separate field experiments were conducted with sugar beet and green bean, at Ankara, Turkey during the 2005 growing season. Different amounts of irrigation water were applied, and various levels of water stress and vegetation occurred. Spectral reflectance, infrared canopy temperature, and some parameters related to crop evapotranspiration (ET c) were observed. Daily ET c values were calculated based on energy balance and soil water balance residual. The fraction of reference ET (ETrF), which is essentially the same with the crop coefficient (K c), was determined, and relationships between spectral vegetation indices (SVIs) were analysed. Under water stress conditions, the ET c and ETrF values estimated by means of energy balance were relatively high. In order to improve the correlation between ETrF and SVIs and for correction of ET c for water‐stressed irrigation treatments, a modification ratio was calculated based on SVIs. Although all three SVIs have a significant relationship with ETrF, the correctness of the modification with a Simple Ratio (SR) was higher. As a consequence, ETrF or crop coefficient (K c) could be estimated by SR, and this information could be used for irrigation water management of large‐scale agricultural lands. 相似文献
3.
I. A. El‐Magd Corresponding author T. Tanton 《International journal of remote sensing》2013,34(11):2359-2370
Satellite images supported by global positioning systems (GPS) and field visits were used to identify the cropping pattern of a large irrigation scheme in Central Asia. Two methods were used to estimate the crop evapotranspiration (ET). In the first, the ETs of the different crops were calculated from local field climatic data using the Penman–Monteith method of calculating crop water requirements as used in the Food and Agriculture Organization (FAO) CropWat programme. The satellite data were transferred to a geographical information system (GIS) and the area of each crop type was identified. Combining the two sets of data gave an estimate of ET and total evaporative water demand for each crop. ET was also calculated directly from the satellite data using a modified sensible heat flux approach (SEBAL). The Penman–Monteith approach estimated the ET to be 5.7, 3.3, 4.4 and 6.3?mm?d?1 for cotton, mixed crop, alfalfa and rice respectively, whereas the ET estimated from the satellite data were 4.4, 3, 3.2 and 5.3?mm?d?1, respectively. The possible causes of these differences are discussed. The FAO Penman–Monteith methodology for estimating crop water requirements is best for planning purposes but the SEBAL approach is potentially more useful for management in that it establishes the amount of water being used by the crop and can help identify where water is being wasted. 相似文献
4.
Estimating crop chlorophyll content with hyperspectral vegetation indices and the hybrid inversion method 总被引:1,自引:0,他引:1
Liang Liang Liping Di Chao Zhang Meixia Deng 《International journal of remote sensing》2016,37(13):2923-2949
A hybrid inversion method was developed to estimate the leaf chlorophyll content (LCC) and canopy chlorophyll content (CCC) of crops. Fifty hyperspectral vegetation indices (VIs), such as the photochemical reflectance index (PRI) and canopy chlorophyll index (CCI), were compared to identify the appropriate VIs for crop LCC and CCC inversion. The hybrid inversion models were then generated from different modelling methods, including the curve-fitting and least squares support vector regression (LS-SVR) and random forest regression (RFR) algorithms, by using simulated Compact High Resolution Imaging Spectrometer (CHRIS) datasets that were generated by a radiative transfer model. Finally, the remote-sensing mapping of a CHRIS image was completed to test the inversion accuracy. The results showed that the remote-sensing mapping of the CHRIS image yielded an accuracy of R2 = 0.77 and normalized root mean squared error (NRMSE) = 17.34% for the CCC inversion, and an accuracy of only R2 = 0.33 and NRMSE = 26.03% for LCC inversion, which indicates that the remote-sensing technique was more appropriate for obtaining chlorophyll content at the canopy scale (CCC) than at the leaf scale (LCC). The estimated results of various VIs and algorithms suggested that the PRI and CCI were the optimal VIs for LCC and CCC inversion, respectively, and RFR was the optimal method for modelling. 相似文献
5.
There are two main parameters describing the amount of water in vegetation: the gravimetric water content (GWC) and the equivalent water thickness (EWT). In this study, we investigated the applicability of hyperspectral water-sensitive indices from canopy spectra for estimating canopy EWT (CEWT) and GWC. First, the spectral reflectance’s response to different levels of canopy water content was analysed and a noticeable increase in the slope of the near-infrared (NIR) shoulder of the canopy spectrum was observed. Next, the correlation between the CEWT and various hyperspectral water-sensitive indices was investigated. It was found that all of the indices could retrieve the CEWT of winter wheat well, with the coefficients of determination (R2) all being higher than 0.80. Finally, the retrieval performance of these indices for canopy GWC was evaluated and no significant correlation was observed between canopy GWC and the water-sensitive indices except for the spectral ratio index in the NIR shoulder region (NSRI). These results showed that the traditional water-sensitive vegetation indices are more sensitive to CEWT than to GWC, especially when the LAI is not highly correlated with the GWC, and that the NSRI is a potential vegetation index for use in the retrieval of GWC. 相似文献
6.
Aline Bsaibes Dominique Courault Frédéric Baret Marie Weiss Albert Olioso Frédéric Jacob Olivier Marloie Nadine Bertrand Véronique Desfond Farzaneh Kzemipour 《Remote sensing of environment》2009,113(4):716-1855
This paper aimed at estimating albedo and Leaf Area Index (LAI) from FORMOSAT-2 satellite that offers a unique source of high spatial resolution (eight meters) images with a high revisit frequency (one to three days). It mainly consisted of assessing the FORMOSAT-2 spectral and directional configurations that are unusual, with a single off nadir viewing angle over four visible-near infra red wavebands. Images were collected over an agricultural region located in South Eastern France, with a three day frequency from the growing season to post-harvest. Simultaneously, numerous ground based measurements were performed over various crops such as wheat, meadow, rice and maize. Albedo and LAI were estimated using empirical approaches that have been widely used for usual directional and spectral configurations (i.e. multidirectional or single nadir viewing angle over visible-near infrared wavebands). Two methods devoted to albedo estimation were assessed, based on stepwise multiple regression and neural network (NNT). Although both methods gave satisfactory results, the NNT performed better (relative RMSE = 3.5% versus 7.3%), especially for low vegetation covers over dark or wet soils that corresponded to albedo values lower than 0.20. Four approaches for LAI estimation were assessed. The first approach based on a stepwise multiple regression over reflectances had the worst performance (relative RMSE = 65%), when compared to the equally performing NDVI based heuristic relationship and reflectance based NNT approach (relative RMSE ≈ 34%). The NDVI based neural network approach had the best performance (relative RMSE = 27.5%), due to the combination of NDVI efficient normalization properties and NNT flexibility. The high FORMOSAT-2 revisit frequency allowed next replicating the dynamics of albedo and LAI, and detecting to some extents cultural practices like vegetation cuts. It also allowed investigating possible relationships between albedo and LAI. The latter depicted specific trends according to vegetation types, and were very similar when derived from ground based data, remotely sensed observations or radiative transfer simulations. These relationships also depicted large albedo variabilities for low LAI values, which confirmed that estimating one variable from the other would yield poor performances for low vegetation cover with varying soil backgrounds. Finally, this empirical study demonstrated, in the context of exhaustively describing the spatiotemporal variability of surface properties, the potential synergy between 1) ground based web-sensors that continuously monitor specific biophysical variables over few locations, and 2) high spatial resolution satellite with high revisit frequencies. 相似文献
7.
Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture 总被引:47,自引:0,他引:47
Driss Haboudane John R Miller Elizabeth Pattey Ian B Strachan 《Remote sensing of environment》2004,90(3):337-352
A growing number of studies have focused on evaluating spectral indices in terms of their sensitivity to vegetation biophysical parameters, as well as to external factors affecting canopy reflectance. In this context, leaf and canopy radiative transfer models are valuable for modeling and understanding the behavior of such indices. In the present work, PROSPECT and SAILH models have been used to simulate a wide range of crop canopy reflectances in an attempt to study the sensitivity of a set of vegetation indices to green leaf area index (LAI), and to modify some of them in order to enhance their responsivity to LAI variations. The aim of the paper was to present a method for minimizing the effect of leaf chlorophyll content on the prediction of green LAI, and to develop new algorithms that adequately predict the LAI of crop canopies. Analyses based on both simulated and real hyperspectral data were carried out to compare performances of existing vegetation indices (Normalized Difference Vegetation Index [NDVI], Renormalized Difference Vegetation Index [RDVI], Modified Simple Ratio [MSR], Soil-Adjusted Vegetation Index [SAVI], Soil and Atmospherically Resistant Vegetation Index [SARVI], MSAVI, Triangular Vegetation Index [TVI], and Modified Chlorophyll Absorption Ratio Index [MCARI]) and to design new ones (MTVI1, MCARI1, MTVI2, and MCARI2) that are both less sensitive to chlorophyll content variations and linearly related to green LAI. Thorough analyses showed that the above existing vegetation indices were either sensitive to chlorophyll concentration changes or affected by saturation at high LAI levels. Conversely, two of the spectral indices developed as a part of this study, a modified triangular vegetation index (MTVI2) and a modified chlorophyll absorption ratio index (MCARI2), proved to be the best predictors of green LAI. Related predictive algorithms were tested on CASI (Compact Airborne Spectrographic Imager) hyperspectral images and, then, validated using ground truth measurements. The latter were collected simultaneously with image acquisition for different crop types (soybean, corn, and wheat), at different growth stages, and under various fertilization treatments. Prediction power analysis of proposed algorithms based on MCARI2 and MTVI2 resulted in agreements between modeled and ground measurement of non-destructive LAI, with coefficients of determination (r2) being 0.98 for soybean, 0.89 for corn, and 0.74 for wheat. The corresponding RMSE for LAI were estimated at 0.28, 0.46, and 0.85, respectively. 相似文献
8.
9.
Airborne hyperspectral discrimination of tree species with different ages using discrete wavelet transform 总被引:1,自引:0,他引:1
A. Ghiyamat H.Z.M. Shafri G.A. Mahdiraji R. Ashurov A.R.M. Shariff S. Mansour 《International journal of remote sensing》2013,34(1):318-342
In this article, the capability of discrete wavelet transform (DWT) to discriminate tree species with different ages using airborne hyperspectral remote sensing is investigated. The performance of DWT is compared against commonly used traditional methods, i.e. original reflectance and first and second derivatives. The hyperspectral data are obtained from Thetford forest of the UK, which contains Corsican and Scots pines with different ages and broadleaved tree species. The discrimination is performed by employing three different spectral measurement techniques (SMTs) including Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and a combination of SAM and SID. Five different mother wavelets with a total of 50 different orders are tested. The wavelet detail coefficient (CD) from each decomposition level and combination of all CDs plus the approximation coefficient from the final decomposition level (C-All) are extracted from each mother wavelet. The results show the superiority of DWT against the reflectance and derivatives for all the three SMTs. In DWT, C-All provided the highest discrimination accuracy compared to other coefficients. An overall accuracy difference of about 20–30% is observed between the finest coefficient and C-All. Amongst the SMTs, SID provided the highest accuracy, while SAM showed the lowest accuracy. Using DWT in combination with SID, an overall accuracy up to around 71.4% is obtained, which is around 13.5%, 14.7%, and 27% higher than the accuracies achieved with reflectance and first and second derivatives, respectively. 相似文献
10.
A new spectral index named Burned Area Index (BAI), specifically designed for burned land discrimination in the red-near-infrared spectral domain, was tested on multitemporal sets of Landsat Thematic Mapper (TM) and NOAA Advanced Very High Resolution Radiometer (AVHRR) images. The utility of BAI for burned land discrimination was assessed against other widely used spectral vegetation indices: Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI) and Global Environmental Monitoring Index (GEMI). BAI provided the highest discrimination ability among the indices tested. It also showed a high variability within scorched areas, which reduced the average normalized distances with respect to other indices. A source of potential confusion between burned land areas and low-reflectance targets, such as water bodies and cloud shadows, was identified. Since BAI was designed to emphasize the charcoal signal in post-fire images, this index was highly dependent on the temporal permanence of charcoal after fires. 相似文献
11.
Xingtong Lu 《International journal of remote sensing》2013,34(5):1447-1469
Vegetation indices are frequently used for the non-destructive assessment of leaf chemistry, especially chlorophyll content. However, most vegetation indices were developed based on the statistical relationship between the spectral reflectance of the adaxial leaf surface and chlorophyll content, even though abaxial leaf surfaces may influence reflectance spectra because of canopy structure or the inclination of leaves. In the present study, reflectance spectra from both adaxial and abaxial leaf surfaces of Populus alba and Ulmus pumila var. pendula were measured. The results showed that structural differences of the two leaf surfaces may result in differences in reflectance and hyperspectral vegetation indices. Among 30 vegetation indices tested, R672/(R550 × R708) had the smallest difference (4.66% for P. alba, 2.30% for U. pumila var. pendula) between the two blade surfaces of the same leaf in both species. However, linear regression analysis showed that several vegetation indices (R850 ? R710)/(R850 ? R680), VOG2, D730, and D740, had high coefficients of determination (R2 > 0.8) and varied little between the two leaf surfaces of the plants we sampled. This demonstrated that these four vegetation indices had relatively stable accuracy for estimating leaf chlorophyll content. The coefficients of determination (R2) for the calibration of P. alba leaves were 0.92, 0.98, 0.93, and 0.95 on the adaxial surfaces, and 0.88, 0.87, 0.88, and 0.92 on the abaxial surfaces. The coefficients of determination (R2) for the calibration of U. pumila var. pendula leaves were 0.85, 0.91, 0.86, and 0.90 on adaxial surface, and 0.80, 0.80, 0.84, and 0.88 on abaxial surface. These four vegetation indices were readily available and were little influenced by the differences in the two leaf surfaces during the estimation of leaf chlorophyll content. 相似文献
12.
13.
Wavelet transform applied to EO-1 hyperspectral data for forest LAI and crown closure mapping 总被引:9,自引:0,他引:9
A comparison of the performance of three feature extraction methods was made for mapping forest crown closure (CC) and leaf area index (LAI) with EO-1 Hyperion data. The methods are band selection (SB), principal component analysis (PCA) and wavelet transform (WT). Hyperion data were acquired on October 9, 2001. A total of 38 field measurements of CC and LAI were collected on August 10-11, 2001, at Blodgett Forest Research Station, University of California at Berkeley, USA. The analysis method consists of (1) conducting atmospheric correction with High Accuracy Atmospheric Correction for Hyperspectral Data (HATCH) to retrieve surface reflectance, (2) extracting features with the three methods: SB, PCA and WT, (3) establishing multivariate regression prediction models, (4) predicting and mapping pixel-based CC and LAI values, and (5) validating the CC and LAI mapped results with photo-interpreted CC and LAI values. The experimental results indicate that the energy features extracted by the WT method are the most effective for mapping forest CC and LAI (mapped accuracy (MA) for CC=84.90%, LAI MA=75.39%), followed by the PCA method (CC MA=77.42%, LAI MA=52.36%). The SB method performed the worst (CC MA=57.77%, LAI MA=50.87%). 相似文献
14.
Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations 总被引:3,自引:0,他引:3
The potential of radiative transfer modelling and inversion techniques for operational uses is investigated in order to retrieve leaf area index in a poplar plantation. The 1-D bidirectional canopy reflectance model SAIL, coupled with the leaf optical properties model PROSPECT, was inverted with hyperspectral airborne DAIS data by means of an iterative method. The root mean square error in LAI estimation was determined against in situ measurements in order to evaluate the impact of different inversion strategies on the LAI retrieval accuracy. These included the selection of an optimal spectral sampling set, the exploitation of prior knowledge in the inversion process and the use of multiview angle data. We claim that the best configuration is achieved by exploiting multiview DAIS data and prior knowledge information about the model variables (RMSE of 0.39 m2 m−2). It is also shown that the use of prior knowledge and the selection of a limited number of bands forming the optimal spectral sampling are instrumental in increasing the accuracy of the inversion process. Our analysis confirms the operational potential of model inversion for biophysical parameter retrieval. 相似文献
15.
Anita Thakur Prakriti Aggarwal Ashwani Kumar Dubey Ahmed Abdelgawad Alvaro Rocha 《Expert Systems》2023,40(1):e13119
Agriculture Industry is highly dependent on environmental and weather conditions. Many times, crops are spoiled because of sudden changes in weather. Therefore, we need a decision model to take care the water requirement of sensitive crops of agriculture industry. The proposed work presents a novel and proficient hybrid model for sensitive crop irrigation system (SCIS). For implementation of the model, brassica crop is taken. The duration and amount of water to be supplied is based upon the weather prediction and soil condition information. The decision model is developed using adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) for brassica crops. In this model, if the input data values are available in range, then ANFIS model would be preferred and if the data sets are available for training, testing and validation then ANN model would be the best choice. The soil moisture, soil status in terms of temperature and leaf wetness are the input and flow control of sprinklers is the out for SCIS. The predicted outputs are analysed to assert the suitability of the proposed approach in the brassica crops. The proposed SCIS achieved an accuracy of 91% and 99% for ANFIS and ANN models respectively. 相似文献
16.
Helmi Z. M. Shafri Mohd I. Anuar Idris A. Seman Nisfariza M. Noor 《International journal of remote sensing》2013,34(22):7111-7129
Although hyperspectral remote sensing has been used to study many agricultural phenomena such as crop stress and diseases, the potential use of this technique for detecting Ganoderma disease infestations and damage to oil palms under field conditions has not been explored to date. This research was conducted to investigate the feasibility of using a portable hyperspectral remote-sensing instrument to identify spectral differences between oil-palm leaves with and without Ganoderma infections. Reflectance spectra of samples representative of three classes of disease severity were collected. The most significant bands for spectral discrimination were selected from reflectance spectra and first derivatives of reflectance spectra. The significant wavelengths were identified using one-way analysis of variance. Then, a Jeffries–Matusita (JM) distance measurement was used to determine spectral separability between the classes. A maximum likelihood classifier method was used to classify the three classes based on the most significant wavelength spectral responses, and an error matrix was finally used to assess the accuracy of the classification. 相似文献
17.
D. M. McAllister 《International journal of remote sensing》2013,34(8):1891-1905
Two promising techniques for estimating Leaf Area Index (LAI) using remote sensing are Linear Spectral Mixture Analysis (LSMA) and Modification of Spectral Vegetation Indices (MSVI). The Normalized Distance Method (ND), which uses principles employed by the LSMA and MSVI techniques, is introduced in this study. These three methods are applied to a region of montane forest in Kananaskis Country, Alberta, Canada, in order to estimate LAI. In situ measurements of LAI in 10 deciduous and 10 coniferous plots, and a SPOT‐4 image taken at the height of the growing season, provided test data that produced relationships for LAI in pure stands of either coniferous or deciduous vegetation using each of the three methods. All methods exhibited varying degrees of performance and demonstrated significant dependence on vegetation type. The ND method produced relationships with coefficients of determination (R 2) of 0.86 and 0.65 for coniferous and deciduous vegetation, respectively; the MSVI method (when using the adjusted Normalized Difference Vegetation Index) produced relationships with R 2 values of 0.79 and 0.59 for coniferous and deciduous vegetation, respectively; and the LSMA technique produced relationships with R 2 values of 0.83 and 0.0 for coniferous and deciduous vegetation, respectively. 相似文献
18.
The present paper discusses a coupled gridded crop modeling and hydrologic modeling system that can examine the benefits of irrigation and costs of irrigation and the coincident impact of the irrigation water withdrawals on surface water hydrology. The system is applied to the Southeastern U.S. The system tools to be discussed include a gridded version (GriDSSAT) of the crop modeling system DSSAT. The irrigation demand from GriDSSAT is coupled to a regional hydrologic model (WaSSI). GriDSSAT and WaSSI are coupled through the USDA NASS CropScape data to provide crop acreages in each watershed. The crop model provides the dynamic irrigation demand which is a function of the weather. The hydrologic model responds to the weather and includes all other anthropogenic competing uses of water. Examples of the system include an analysis of the hydrologic impact of future expansion of irrigation and the real-time impact of short-term drought. 相似文献
19.
LAI retrieval and uncertainty evaluations for typical row-planted crops at different growth stages 总被引:1,自引:0,他引:1
Leaf area index (LAI) is a basic quantity indicating crop growth situation and plays a significant role in agricultural, ecological and meteorological models at local, regional and global scale. It is a common approach to invert LAI based on canopy reflectance models using optimization method. Radiative transfer model for continuous vegetation canopy such as SAIL models is widely used for crop LAI inversion. However, crops are mostly planted as row structure in China and they don't fit the assumptions of continuous vegetation especially at the earlier growth stages. What kind of models should be used to invert LAI for typical row-planted crops at different growing stages? Taking corn as an example, the factors which influence the row planted crop LAI estimation are investigated in this paper. Using the computer simulated BRDF data sets, different models for LAI inversion at different growth stages are evaluated based on parameter sensitivity analysis. Bayes theory is used to introduce a priori knowledge in the inversion process. In 2005, a field campaign is carried out to validate LAI inversion accuracy during corn's growing stages in Huailai, Hebei Province, China. Inverted LAI from both the measured Canopy Reflectance (CR) data and Moderate Resolution Imaging Spectroradiometer (MODIS) data are very promising. The results show that at least two kinds of models should be adopted for corn canopy at different growth stages, i.e., row structure model for early growth stage (before elongation) and homogeneous canopy model for later growth stage (after elongation). 相似文献
20.
All dynamic crop models for growth and development have several parameters whose values are usually determined by using measurements coming from the real system. The parameter estimation problem is raised as an optimization problem and optimization algorithms are used to solve it. However, because the model generally is nonlinear the optimization problem likely is multimodal and therefore classical local search methods fail in locating the global minimum and as a consequence the model parameters could be inaccurate estimated. This paper presents a comparison of several evolutionary (EAs) and bio-inspired (BIAs) algorithms, considered as global optimization methods, such as Differential Evolution (DE), Covariance Matrix Adaptation Evolution Strategy (CMA-ES), Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) on parameter estimation of crop growth SUCROS (a Simple and Universal CROp Growth Simulator) model. Subsequently, the SUCROS model for potential growth was applied to a husk tomato crop (Physalis ixocarpa Brot. ex Horm.) using data coming from an experiment carried out in Chapingo, Mexico. The objective was to determine which algorithm generates parameter values that give the best prediction of the model. An analysis of variance (ANOVA) was carried out to statistically evaluate the efficiency and effectiveness of the studied algorithms. Algorithm's efficiency was evaluated by counting the number of times the objective function was required to approximate an optimum. On the other hand, the effectiveness was evaluated by counting the number of times that the algorithm converged to an optimum. Simulation results showed that standard DE/rand/1/bin got the best result. 相似文献