首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many algorithms have been developed for the remote estimation of biophysical characteristics of vegetation, in terms of combinations of spectral bands, derivatives of reflectance spectra, neural networks, inversion of radiative transfer models, and several multi-spectral statistical approaches. However, the most widespread type of algorithm used is the mathematical combination of visible and near-infrared reflectance bands, in the form of spectral vegetation indices. Applications of such vegetation indices have ranged from leaves to the entire globe, but in many instances, their applicability is specific to species, vegetation types or local conditions. The general objective of this study is to evaluate different vegetation indices for the remote estimation of the green leaf area index (Green LAI) of two crop types (maize and soybean) with contrasting canopy architectures and leaf structures. Among the indices tested, the chlorophyll Indices (the CIGreen, the CIRed-edge and the MERIS Terrestrial Chlorophyll Index, MTCI) exhibited strong and significant linear relationships with Green LAI, and thus were sensitive across the entire range of Green LAI evaluated (i.e., 0.0 to more than 6.0 m2/m2). However, the CIRed-edge was the only index insensitive to crop type and produced the most accurate estimations of Green LAI in both crops (RMSE = 0.577 m2/m2). These results were obtained using data acquired with close range sensors (i.e., field spectroradiometers mounted 6 m above the canopy) and an aircraft-mounted hyperspectral imaging spectroradiometer (AISA). As the CIRed-edge also exhibited low sensitivity to soil background effects, it constitutes a simple, yet robust tool for the remote and synoptic estimation of Green LAI. Algorithms based on this index may not require re-parameterization when applied to crops with different canopy architectures and leaf structures, but further studies are required for assessing its applicability in other vegetation types (e.g., forests, grasslands).  相似文献   

2.
The leaf area index (LAI) and the clumping index (CI) provide valuable insight into the spatial patterns of forest canopies, the canopy light regime and forest productivity. This study examines the spatial patterns of LAI and CI in a boreal mixed-wood forest, using extensive field measurements and remote sensing analysis. The objectives of this study are to: (1) examine the utility of airborne lidar (light detection and ranging) and hyperspectral data to model LAI and clumping indices; (2) compare these results to those found from commonly used Landsat vegetation indices (i.e. the normalized difference vegetation index (NDVI) and the simple ratio (SR)); (3) determine whether the fusion of lidar data with Landsat and/or hyperspectral data will improve the ability to model clumping and LAI; and (4) assess the relationships between clumping, LAI and canopy biochemistry.

Regression models to predict CI were much stronger than those for LAI at the site. Lidar was the single best predictor of CI (r 2 > 0.8). Landsat NDVI and SR also had a moderately strong predictive performance for CI (r 2 > 0.68 with simple linear and non-linear regression forms), suggesting that canopy clumping can be predicted operationally from satellite platforms, at least in boreal mixed-wood environments. Foliar biochemistry, specifically canopy chlorophyll, carotenoids, magnesium, phosphorus and nitrogen, was strongly related to the clumping index. Combined, these results suggest that Landsat models of clumping could provide insight into the spatial distribution of foliar biochemistry, and thereby photosynthetic capacity, for boreal mixed-wood canopies. LAI models were weak (r 2 < 0.4) unless separate models were used for deciduous and coniferous plots. Coniferous LAI was easier to model than deciduous LAI (r 2 > 0.8 for several indices). Deciduous models of LAI were weaker for all remote sensing indices (r 2 < 0.67). There was a strong, linear relationship between foliar biochemistry and LAI for the deciduous plots. Overall, our results suggest that broadband satellite indices have strong predictive performance for clumping, but that airborne hyperspectral or lidar data are required to develop strong models of LAI at this boreal mixed-wood site.  相似文献   

3.
The normalized difference vegetation index (NDVI) is a commonly used index for monitoring crop growth status. Previous studies have shown that the leaf area index (LAI) estimation based on NDVI is limited by saturation that occurs under conditions of relatively dense canopies (LAI > 2 m2 m–2). To reduce the saturation effect, we suggested new spectral indices through the spectral indices approach. The results suggested that the two-band normalized difference spectral index (NDSI = ((ρ940 – ρ730) /(ρ940 + ρ730))) resulted from the two-band spectral indices approach and the three-band modified normalized difference spectral index (mNDSI = ((ρ940 – 0.8 × ρ950) – ρ730) /((ρ940 – 0.8 × ρ950) + ρ730)) resulted from the three-band spectral indices approach, and they were able to mitigate saturation and improve the LAI prediction with a determination coefficient (R2) of 0.77 and 0.78, respectively. In the validation based on data from independent experiments, these new indices exhibited an accuracy with relative root mean square error (RRMSE) lower than 23.38% and bias higher than –0.40. These accuracies were significantly higher than those obtained with some existing indices with good performance in LAI estimation, such as the enhanced vegetation index (EVI) (RRMSE = 30.19%, bias = –0.34) and the modified triangular vegetation index 2 (MTVI2) (RRMSE = 29.30%, bias = –0.28), and the indices with the ability to mitigate the saturation, such as the wide dynamic range vegetation index (WDRVI) (RRMSE = 31.37%, bias = –0.54), the red-edge wide dynamic range vegetation index (red-edge WDRVI) (RRMSE = 26.34%, bias = –0.54), and the normalized difference red-edge index (NDRE) (RRMSE = 28.41%, bias = –0.56). Additionally, these new indices were more sensitive under moderate to high LAI conditions (between 2 and 8 m2 m–2). Between these two new developed spectral indices, there was no significant difference in the accuracy and sensitivity assessments. Considering the index structure and convenience in application, we demonstrated that the two-band spectral index NDSI((ρ940 – ρ730) /(ρ940 + ρ730)) is efficient in mitigating saturation and has considerable potential for estimating the LAI of canopies throughout the entire growing season of wheat (Triticum aestivum L.), whereas the three-band spectral index contributes lesser in the saturation mitigation provided the red-edge band has been contained.  相似文献   

4.
The inflection point of spectral reflectance of crop in the red edge region (680–780 nm) is termed as the red edge position (REP), which is sensitive to crop biochemical and biophysical parameters. We propose a technique for automatic detection of four dynamic wavebands, i.e. two in the far-red and two in the near-infrared (NIR) region from hyperspectral data, for REP estimation using the linear extrapolation method. A field experiment was conducted at the SHIATS Farm, Allahabad, India, with four levels of nitrogen and irrigation treatments to assess the sensitivity of REP towards crop stress. A correlation analysis was carried out between REPs and different biophysical parameters, such as leaf area index (LAI) and chlorophyll content index (CCI), recorded in each plot at 50, 70, and 90 days after sowing of wheat crop under the field experiment. The inter-comparison among different REP extraction techniques revealed that the proposed technique, i.e. the modified linear extrapolation (MLE) method, has a better ability to distinguish different crop stress conditions. REPs extracted using the MLE technique showed high correlations with a wide range of LAI, CCI, and LAI × CCI, being comparable with results obtained using the traditional linear extrapolation and polynomial fitting techniques. The behaviour of the new techniques was found to be stable at both narrower and broader bandwidth, i.e. 2 and 10 nm. A new red-edge-based index, i.e. area under REP (AREP), was used to detect the cumulative stress over wheat crop by utilizing the REP and its rate of change information at different crop growth stages. A high coefficient of determination (R2 = 0.89) was found between AREP and dry grain yield (Q ha?1) up to 50 Q ha?1 of wheat crop, whereas, beyond this range the relationship was found to be diminishing.  相似文献   

5.
A growing number of studies have focused on evaluating spectral indices in terms of their sensitivity to vegetation biophysical parameters, as well as to external factors affecting canopy reflectance. In this context, leaf and canopy radiative transfer models are valuable for modeling and understanding the behavior of such indices. In the present work, PROSPECT and SAILH models have been used to simulate a wide range of crop canopy reflectances in an attempt to study the sensitivity of a set of vegetation indices to green leaf area index (LAI), and to modify some of them in order to enhance their responsivity to LAI variations. The aim of the paper was to present a method for minimizing the effect of leaf chlorophyll content on the prediction of green LAI, and to develop new algorithms that adequately predict the LAI of crop canopies. Analyses based on both simulated and real hyperspectral data were carried out to compare performances of existing vegetation indices (Normalized Difference Vegetation Index [NDVI], Renormalized Difference Vegetation Index [RDVI], Modified Simple Ratio [MSR], Soil-Adjusted Vegetation Index [SAVI], Soil and Atmospherically Resistant Vegetation Index [SARVI], MSAVI, Triangular Vegetation Index [TVI], and Modified Chlorophyll Absorption Ratio Index [MCARI]) and to design new ones (MTVI1, MCARI1, MTVI2, and MCARI2) that are both less sensitive to chlorophyll content variations and linearly related to green LAI. Thorough analyses showed that the above existing vegetation indices were either sensitive to chlorophyll concentration changes or affected by saturation at high LAI levels. Conversely, two of the spectral indices developed as a part of this study, a modified triangular vegetation index (MTVI2) and a modified chlorophyll absorption ratio index (MCARI2), proved to be the best predictors of green LAI. Related predictive algorithms were tested on CASI (Compact Airborne Spectrographic Imager) hyperspectral images and, then, validated using ground truth measurements. The latter were collected simultaneously with image acquisition for different crop types (soybean, corn, and wheat), at different growth stages, and under various fertilization treatments. Prediction power analysis of proposed algorithms based on MCARI2 and MTVI2 resulted in agreements between modeled and ground measurement of non-destructive LAI, with coefficients of determination (r2) being 0.98 for soybean, 0.89 for corn, and 0.74 for wheat. The corresponding RMSE for LAI were estimated at 0.28, 0.46, and 0.85, respectively.  相似文献   

6.
Landscapes containing differing amounts of ecological disturbance provide an excellent opportunity to validate and better understand the emerging Moderate Resolution Imaging Spectrometer (MODIS) vegetation products. Four sites, including 1‐year post‐fire coniferous, 13‐year post‐fire deciduous, 24‐year post‐fire deciduous, and >100 year old post‐fire coniferous forests, were selected to serve as a post‐fire chronosequence in the central Siberian region of Krasnoyarsk (57.3°N, 91.6°E) with which to study the MODIS leaf area index (LAI) and vegetation index (VI) products. The collection 4 MODIS LAI product correctly represented the summer site phenologies, but significantly underestimated the LAI value of the >100 year old coniferous forest during the November to April time period. Landsat 7‐derived enhanced vegetation index (EVI) performed better than normalized difference vegetation index (NDVI) to separate the deciduous and conifer forests, and both indices contained significant correlation with field‐derived LAI values at coniferous forest sites (r 2 = 0.61 and r 2 = 0.69, respectively). The reduced simple ratio (RSR) markedly improved LAI prediction from satellite measurements (r 2 = 0.89) relative to NDVI and EVI. LAI estimates derived from ETM+ images were scaled up to evaluate the 1 km resolution MODIS LAI product; from this analysis MODIS LAI overestimated values in the low LAI deciduous forests (where LAI<5) and underestimated values in the high LAI conifer forests (where LAI>6). Our results indicate that further research on the MODIS LAI product is warranted to better understand and improve remote LAI quantification in disturbed forest landscapes over the course of the year.  相似文献   

7.
A field experiment with wheat was conducted with four different nitrogen and four different water stress levels, and hyperspectral reflectances in the 350–2500 nm range were recorded at six crop phenostages for two years (2009–2010 and 2010–2011). Thirty-two hyperspectral indices were determined using the first-year reflectance data. Plant nitrogen (N) status, characterized by leaf nitrogen content (LNC) and plant nitrogen accumulation (PNA), showed the highest R 2 with the spectral indices at the booting stage. The best five predictive equations for LNC were based on the green normalized difference vegetation index (GNDVI), normalized difference chlorophyll index (NDCI), normalized difference705 (ND705) index, ratio index-1dB (RI-1dB) and Vogelman index a (VOGa). Their validation using the second-year data showed high R 2 (>0.80) and ratio of performance to deviation (RPD; >2.25) and low root mean square error (RMSE; <0.24) and relative error (<10%). For PNA, five predictive equations with simple ratio pigment index (SRPI), photochemical reflectance index (PRI), modified simple ratio705 (mSR705), modified normalized difference705 (mND705) and normalized pigment chlorophyll index (NPCI) as predicting indices yielded the best relations with high R 2 > 0.80. The corresponding RMSE and RE of these ranged from 1.39 to 1.13 and from 24.5% to 33.3%, respectively. Although the predicted values show good agreement with the observed values, the prediction of LNC is more accurate than PNA, as indicated by higher RMSE and very high RE for the latter. Hence, the plant nitrogen stress of wheat can be accurately assessed through the prediction of LNC based on the five identified reflectance indices at the booting stage.  相似文献   

8.
Multiple remote-sensing techniques have been developed to identify crop-water stress; however, some methods may be difficult for farmers to apply. If spectral reflectance data can be used to monitor crop-water stress, growers could use this information as a quick low-cost guideline for irrigation management, thus helping save water by preventing over-irrigating and achieving desired crop yields. Data was collected in the 2013 growing season near Greeley, Colorado, where drip irrigation was used to irrigate 12 corn (Zea mays L.) treatments with varying water-deficit levels. Ground-based multispectral data were collected and three different vegetation indices were evaluated. These included the normalized difference vegetation index (NDVI), the optimized soil-adjusted vegetation index (OSAVI), and the Green normalized difference vegetation index (GNDVI). The three vegetation indices were compared to water stress as indicated by the stress coefficient (Ks), and water deficit in the root zone was calculated using a soil water balance. To compare the indices to Ks, vegetation ratios were developed from vegetation indices in the process of normalization. Vegetation ratios are defined as the non-stressed vegetation index divided by the stressed vegetation index. Results showed that vegetation ratios were sensitive to water stress as indicated by the good coefficient of determination (R2 > 0.46) values and low root mean square error (RMSE < 0.076) values when compared to Ks. To use spectral reflectance to manage crop-water stress, an example irrigation trigger point of 0.93 for the vegetation ratios was determined for a 10–12% loss in yield. These results were validated using data collected from a different field. The performance of the vegetation ratio approach was better than when applied to the main field giving higher goodness of fit values (R2 > 0.63), and lower error values (RMSE < 0.043) between Ks and the vegetation indices.  相似文献   

9.
Existing vegetation indices and red-edge techniques have been widely used for the assessment of vegetation status and vegetation health from remote-sensing instruments. This study proposed and applied optimized Airborne Imaging Spectrometer for Applications (AISA) airborne hyperspectral indices in assessing and mapping stressed oil palm trees. Six vegetation indices, four red-edge techniques, a standard supervised classifier and three optimized AISA spectral indices were compared in mapping diseased oil palms using AISA airborne hyperspectral imagery. The optimized AISA spectral indices algorithms used newly defined reflectance values at wavelength locations of 734 nm (near-infrared (NIR)) and 616 nm (red). The selection of these two bands was based on laboratory statistical analysis using field spectroradiometer reflectance data. These two bands were then applied to the AISA airborne hyperspectral imagery using the three optimized algorithms for AISA data. The newly formulated AISA hyperspectral indices were D2 = R 616/R 734, normalized difference vegetation index a (NDVIa)?=?(R 734R 616)/(R 734?+?R 616) and transformed vegetation index a (TVIa)?=?((NDVIa?+?0.5)/(abs (NDVIa?+?0.5))?×?[abs (NDVIa?+?0.5)]1/2. The classification results from the optimized AISA hyperspectral indices were compared with the other techniques and the optimized AISA spectral indices obtained the highest overall accuracy. D2 and NDVIa obtained 86% of overall accuracy followed by TVIa with 84% of overall accuracy.  相似文献   

10.
Leaf area index (LAI) is a key parameter of atmosphere–vegetation exchanges, affecting the net ecosystem exchange and the productivity. At regional or continental scales, LAI can be estimated by remotely‐sensed spectral vegetation indices (SVI). Nevertheless, relationships between LAI and SVI show saturation for LAI values greater than 3–5. This is one of the principal limitations of remote sensing of LAI in forest canopies. In this article, a new approach is developed to determine LAI from the spatial variability of radiometric data. To test this method, in situ measurements for LAI of 40 stands, with three dominant species (European beech, oak and Scots pine) were available over 5 years in the Fontainebleau forest near Paris. If all years and all species are pooled, a good linear relationship without saturation is founded between average stand LAI measurements and a model combining the logarithm of the standard deviation and the skewness of the normalized difference vegetation index (NDVI) (R 2 = 0.73 rmse = 1.08). We demonstrate that this relation can be slightly improved by using different linear models for each year and each species (R 2 = 0.82 rmse = 0.86), but the standard deviation is less sensitive to the species and the year effects than the mean NDVI and is therefore a performing index.  相似文献   

11.
Leaf area index (LAI) is an important structural parameter in terrestrial ecosystem modelling and management. Therefore, it is necessary to conduct an investigation on using moderate-resolution satellite imagery to estimate and map LAI in mixed natural forests in southeastern USA. In this study, along with ground-measured LAI and Landsat TM imagery, the potential of Landsat 5 TM data for estimating LAI in a mixed natural forest ecosystem in southeastern USA was investigated and a modelling method for mapping LAI in a flooding season was developed. To do so, first, 70 ground-based LAI measurements were collected on 8 April 2008 and again on 1 August 2008 and 30 July 2009; TM data were calibrated to ground surface reflectance. Then univariate correlation and multivariate regression analyses were conducted between the LAI measurement and 13 spectral variables, including seven spectral vegetation indices (VIs) and six single TM bands. Finally, April 08 and August 08 LAI maps were made by using TM image data, a multivariate regression model and relationships between April 08 and August 08 LAI measurements. The experimental results indicate that Landsat TM imagery could be used for mapping LAI in a mixed natural forest ecosystem in southeastern USA. Furthermore, TM4 and TM3 single bands (R 2 > 0.45) and the soil adjusted vegetation index, transformed soil adjusted vegetation index and non-linear vegetation index (R 2 > 0.64) have produced the highest and second highest correlation with ground-measured LAI. A better modelling result (R 2?=?0.78, accuracy?=?73%, root mean square error (RMSE)?=?0.66) of the 10-predictor multiple regression model was obtained for estimating and mapping April 08 LAI from TM data. With a linear model and a power model, August 08 LAI maps were successfully produced from the April 08 LAI map (accuracy?=?79%, RMSE?=?0.57), although only 58–65% of total variance could be accounted for by the linear and non-linear models.  相似文献   

12.
Irrigated agriculture is an important strategic sector in arid and semi-arid regions. Given the large spatial coverage of irrigated areas, operational tools based on satellite remote sensing can contribute to their optimal management. The aim of this study was to evaluate the potential of two spectral indices, calculated from SPOT-5 high-resolution visible (HRV) data, to retrieve the surface water content values (from bare soil to completely covered soil) over wheat fields and detect irrigation supplies in an irrigated area. These indices are the normalized difference water index (NDWI) and the moisture stress index (MSI), covering the main growth stages of wheat. These indices were compared to corresponding in situ measurements of soil moisture and vegetation water content in 30 wheat fields in an irrigated area of Morocco, during the 2012–2013 and 2013–2014 cropping seasons. NDWI and MSI were highly correlated with in situ measurements at both the beginning of the growing season (sowing) and at full vegetation cover (grain filling). From sowing to grain filling, the best correlation (R2 = 0.86; < 0.01) was found for the relationship between NDWI values and observed soil moisture values. These results were validated using a k-fold cross-validation methodology; they indicated that NDWI can be used to estimate and map surface water content changes at the main crop growth stages (from sowing to grain filling). NDWI is an operative index for monitoring irrigation, such as detecting irrigation supplies and mitigating wheat water stress at field and regional levels in semi-arid areas.  相似文献   

13.
Remotely sensed data from Landsat-8 and Sentinel-2 were used to demonstrate the estimation of irrigation water requirement (ρ) for treed horticulture crops in an important irrigation district of Australia. Crop- and region-specific relationship between satellite-derived evapotranspiration (ET) and normalized difference vegetation index (NDVI) was combined with daily step soil water balance to investigate the performance of horticulture crops for their water use during the peak irrigation demand period (summer) over three years from 2014–15 to 2016–17. Relative irrigation water use (RIWU) as the key irrigation performance indicator was calculated by comparing the irrigation water supply (ψ) records and the ρ estimates. ψ and ρ of the treed horticulture crops showed a strong positive correlation (Coefficient of determination, R2 > 0.70; p < 0.001) for each of the three summer seasons investigated, indicating an overall consistency in irrigation pattern. However, the values of both ρ and ψ varied considerably at farm level over the seasons, highlighting the changing demand and supply of crop water over the years. Most farms remained within the optimal irrigation range (0.5–1.5 RIWU) over the seasons – 75% in 2014–15, 68% in 2015–16, and 80% in 2016–17. However, some farms were over-irrigated (>1.5 RIWU) – 12% in 2014–15, 5% in 2015–16, and 8% in 2016–17.  相似文献   

14.
In the present paper we have looked into the excessive occurrence of 255 standard fill value retrievals in Collection 4 MODIS LAI product over soybean areas from crop year 2001/2002 to 2004/2005, in Southern Brazil. The 255 standard fill value indicates that no leaf area index (LAI) retrieval was possible for the considered pixel. Time series of eight‐day composite LAI images (MOD15A2) and 16‐day composite NDVI images (MOD13Q1) were both compared with a soybean reference map derived from multitemporal Landsat images. The Land Cover Type 3 product (MOD12Q1) was also analysed to verify if the occurrence of those retrievals was related to misclassification of the broadleaf crops biome. Results indicated that the 255 standard fill value retrievals in Collection 4 LAI product were mainly related to soybean areas during peak growing season and occurred in every crop year we have studied. Eventual misclassification in the biome map was not the cause of those retrievals in the Collection 4 MODIS LAI product.  相似文献   

15.
Motivated by the operational use of remote sensing in various agricultural crop studies, this study evaluates the application and utility of remote sensing‐based techniques in yield prediction and waterlogging assessment of tea plantation land in the Assam State of India. The potential of widely used vegetation indices like NDVI and SR (simple ratio) and the recently proposed TVI has been evaluated for the prediction of green leaf tea yield and made tea yield based on image‐derived leaf area index (LAI), along with weather parameters. It was observed that the yield model based on the TVI showed the highest correlation (R2 = 0.83) with green leaf tea yield. The NDVI‐ and SR‐based models suffered non‐responsiveness when the yield approached maximum. The NDVI and SR showed saturation when the LAI exceeded a magnitude of 4. However, the TVI responded well, even when the LAI exceeded 5, and thus has potential use in the estimation of the LAI of dense vegetation such as some crops and forest where it generally exceeds the threshold value of 4.

An attempt was made for the innovative application of TCT and NDWI in the mapping of waterlogging in tea plantation land. The NDWI in conjunction with TCT offered fairly good accuracy (87%) in the delineation of tea areas prone to waterlogging. This observation indicates the potential of NDWI and TCT in mapping waterlogged areas where the soil has considerable vegetation cover.  相似文献   

16.
Leaf area index (LAI) is a key vegetation biophysical parameter and is extensively used in modelling of phenology, primary production, light interception, evapotranspiration, carbon, and nitrogen dynamics. In the present study, we attempt to spatially characterize LAI for natural forests of Western Ghats India, using ground based and Landsat-8 Operational Land Imager (OLI) sensor satellite data. For this, 41 ground-based LAI measurements were carried out across a gradient of tropical forest types, viz. dry, moist, and evergreen forests using LAI-2200 plant canopy analyser, during the month of March 2015. Initially, measured LAI values were regressed with 15 spectral variables, including nine spectral vegetation indices (SVIs) and six Landsat-8 surface reflectance (ρ) variables using univariate correlation analysis. Results showed that the red (ρred), near-infrared (ρNIR), shortwave infrared (ρSWIR1, ρSWIR2) reflectance bands (R2 > 0.6), and all SVIs (R2 > 0.7) except simple ratio (SR) have the highest and second highest coefficient of determination with ground-measured LAI. In the second step, to select significant (high R2, low root mean square error (RMSE), and p-level < 0.05) SVIs to determine the best representative model, stepwise multiple linear regression (SMLR) was implemented. The results indicate that the SMLR model predicted LAI with better coefficient of determination (R2 = 0.83, RMSE = 0.78) using normalized difference vegetation index, enhanced vegetation index, and soil-adjusted vegetation index variables compared to the univariate approach. The predicted SMLR model was used to estimate a spatial map of LAI. It is desirable to evaluate the stability and potentiality of regional LAI models in natural forest ecosystems against the operationally accepted Moderate Resolution Imaging Spectroradiometer (MODIS) global LAI product. To do this, the Landsat-8 pixel-based LAI map was resampled to 1 km resolution and compared with the MODIS derived LAI map. Results suggested that Landsat-8 OLI-based VIs provide significant LAI maps at moderate resolution (30 m) as well as coarse resolution (1 km) for regional climate models.  相似文献   

17.
Biophysical parameters such as leaf area index (LAI) are key variables for vegetation monitoring and particularly important for modelling energy and matter fluxes in the biosphere. Therefore LAI has been derived from remote sensing data operationally based on data with a somewhat coarse spatial resolution. This study aims at deriving high-spatial resolution (6.5 m) multi-temporal LAI for grasslands based on RapidEye data by statistical regressions between vegetation indices (VIs) and field samplings. However, the suitability of those data for grassland LAI derivation has not been tested to date. Thus, the potential of RapidEye data in general and its red edge band in particular are investigated, as well as the robustness of the established relationships for different points in time.

LAI was measured repeatedly over summer 2011 at about 30 different meadows in the Bavarian alpine upland using the LAI-2000 and correlated with VI values. The best relationships resulted from using the ratio vegetation index and red edge indices (NDVIrededge, rededge ratio index 1, and relative length) in non-linear models. Thus the indices based on the red edge channel improved regression modelling. The associated transfer functions achieved R2 values ranging from 0.57 to 0.85. The temporal transferability of those transfer functions to other dates was shown to be limited, with the root mean square errors (RMSEs) of several scenes exceeding one. However, when the LAI ranges are similar, a reliable transfer is possible: for example, the transfer of the regression function based on early autumn measurements showed RMSEs of only 0.77–0.95 for the other scenes except for the high-density stage in July, when the LAI reaches unprecedented maximal values. Also, the combination of multi-temporal training data shows no saturation of the selected indices and enables a satisfactory LAI mapping of different dates (RMSE = 0.59 – 1.02).  相似文献   

18.
Estimation of chlorophyll content and the leaf area index (LAI) using remote sensing technology is of particular use in precision agriculture. Wavelengths at the red edge of the vegetation spectrum (705 and 750 nm) were selected to test vegetation indices (VIs) using spaceborne hyperspectral Hyperion data for the estimation of chlorophyll content and LAI in different canopy structures. Thirty sites were selected for the ground data collection. The results show that chlorophyll content and LAI can be successfully estimated by VIs derived from Hyperion data with a root mean square error (RMSE) of 7.20–10.49 μg cm?2 for chlorophyll content and 0.55–0.77 m2 m?2 for LAI. The special index derived from three bands provided the best estimation of the chlorophyll content (RMSE of 7.19 μg cm?2 for the Modified Chlorophyll Absorption Ratio Index/Optimized Soil-Adjusted Vegetation Index (MCARI/OSAVI705)) and LAI (RMSE of 0.55 m2 m?2 for a second form of the MCARI (MCARI2705)). These results demonstrate the possibilities for analysing the variation in chlorophyll content and LAI using hyperspectral Hyperion data with bands from the red edge of the vegetation spectrum.  相似文献   

19.
Ecological applications of remote-sensing techniques are generally limited to images after atmospheric correction, though other radiometric correction data are potentially valuable. In this article, six spectral vegetation indices (VIs) were derived from a SPOT 5 image at four radiometric correction levels: digital number (DN), at-sensor radiance (SR), top of atmosphere reflectance (TOA) and post-atmospheric correction reflectance (PAC). These VIs include the normalized difference vegetation index (NDVI), ratio vegetation index (RVI), slope ratio of radiation curve (K), general radiance level (L), visible-infrared radiation balance (B) and band radiance variation (V). They were then related to the leaf area index (LAI), acquired from in situ measurement in Hetian town, Fujian Province, China. The VI–LAI correlation coefficients varied greatly across vegetation types, VIs as well as image radiometric correction levels, and were not surely increased by image radiometric corrections. Among all 330 VI–LAI models established, the R 2 of multi-variable models were generally higher than those of the single-variable ones. The independent variables of the best VI–LAI models contained all VIs from all radiometric correction levels, showing the potentials of multi-radiometric correction images in LAI estimating. The results indicated that the use of VIs from multiple radiometric correction images can better exploit the capabilities of remote-sensing information, thus improving the accuracy of LAI estimating.  相似文献   

20.
Two separate field experiments were conducted with sugar beet and green bean, at Ankara, Turkey during the 2005 growing season. Different amounts of irrigation water were applied, and various levels of water stress and vegetation occurred. Spectral reflectance, infrared canopy temperature, and some parameters related to crop evapotranspiration (ET c) were observed. Daily ET c values were calculated based on energy balance and soil water balance residual. The fraction of reference ET (ETrF), which is essentially the same with the crop coefficient (K c), was determined, and relationships between spectral vegetation indices (SVIs) were analysed. Under water stress conditions, the ET c and ETrF values estimated by means of energy balance were relatively high. In order to improve the correlation between ETrF and SVIs and for correction of ET c for water‐stressed irrigation treatments, a modification ratio was calculated based on SVIs. Although all three SVIs have a significant relationship with ETrF, the correctness of the modification with a Simple Ratio (SR) was higher. As a consequence, ETrF or crop coefficient (K c) could be estimated by SR, and this information could be used for irrigation water management of large‐scale agricultural lands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号