首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Leaf chlorophyll content in coniferous forest canopies, a measure of stand condition, is the target of studies and models linking leaf reflectance and transmittance and canopy hyperspectral reflectance imagery. The viability of estimation of needle chlorophyll content from airborne hyperspectral optical data through inversion of linked leaf level and canopy level radiative transfer models is discussed in this paper. This study is focused on five sites of Jack Pine (Pinus banksiana Lamb.) in the Algoma Region (Canada), where field, laboratory and airborne data were collected in 1998 and 1999 campaigns. Airborne hyperspectral CASI data of 72 bands in the visible and near-infrared region and 2 m spatial resolution were collected from 20×20 m study sites of Jack Pine in 2 consecutive years. It was found that needle chlorophyll content could be estimated at the leaf level (r2=0.4) by inversion of the PROSPECT leaf model from needle reflectance and transmittance spectra collected with a special needle carrier apparatus coupled to the Li-Cor 1800 integrating sphere. The Jack Pine forest stands used for this study with LAI>2, and the high spatial resolution hyperspectral reflectance collected, allowed the use of the SPRINT canopy reflectance model coupled to PROSPECT for needle chlorophyll content estimation by model inversion. The optical index R750/R710 was used as the merit function in the numerical inversion to minimize the effect of shadows and LAI variation in the mean canopy reflectance from the 20×20 m plots. Estimates of needle pigment content from airborne hyperspectral reflectance using this linked leaf-canopy model inversion methodology showed an r2=0.4 and RMSE=8.1 μg/cm2 when targeting sunlit crown pixels in Jack Pine sites with pigment content ranging between 26.8 and 56.8 μg/cm2 (1570-3320 μg/g).  相似文献   

2.
Vegetation indices are frequently used for the non-destructive assessment of leaf chemistry, especially chlorophyll content. However, most vegetation indices were developed based on the statistical relationship between the spectral reflectance of the adaxial leaf surface and chlorophyll content, even though abaxial leaf surfaces may influence reflectance spectra because of canopy structure or the inclination of leaves. In the present study, reflectance spectra from both adaxial and abaxial leaf surfaces of Populus alba and Ulmus pumila var. pendula were measured. The results showed that structural differences of the two leaf surfaces may result in differences in reflectance and hyperspectral vegetation indices. Among 30 vegetation indices tested, R672/(R550 × R708) had the smallest difference (4.66% for P. alba, 2.30% for U. pumila var. pendula) between the two blade surfaces of the same leaf in both species. However, linear regression analysis showed that several vegetation indices (R850 ? R710)/(R850 ? R680), VOG2, D730, and D740, had high coefficients of determination (R2 > 0.8) and varied little between the two leaf surfaces of the plants we sampled. This demonstrated that these four vegetation indices had relatively stable accuracy for estimating leaf chlorophyll content. The coefficients of determination (R2) for the calibration of P. alba leaves were 0.92, 0.98, 0.93, and 0.95 on the adaxial surfaces, and 0.88, 0.87, 0.88, and 0.92 on the abaxial surfaces. The coefficients of determination (R2) for the calibration of U. pumila var. pendula leaves were 0.85, 0.91, 0.86, and 0.90 on adaxial surface, and 0.80, 0.80, 0.84, and 0.88 on abaxial surface. These four vegetation indices were readily available and were little influenced by the differences in the two leaf surfaces during the estimation of leaf chlorophyll content.  相似文献   

3.
This article aims at finding efficient hyperspectral indices for the estimation of forest sun leaf chlorophyll content (CHL, µg cmleaf? 2), sun leaf mass per area (LMA, gdry matter mleaf? 2), canopy leaf area index (LAI, m2leaf msoil? 2) and leaf canopy biomass (Bleaf, gdry matter msoil? 2). These parameters are useful inputs for forest ecosystem simulations at landscape scale. The method is based on the determination of the best vegetation indices (index form and wavelengths) using the radiative transfer model PROSAIL (formed by the newly-calibrated leaf reflectance model PROSPECT coupled with the multi-layer version of the canopy radiative transfer model SAIL). The results are tested on experimental measurements at both leaf and canopy scales. At the leaf scale, it is possible to estimate CHL with high precision using a two wavelength vegetation index after a simulation based calibration. At the leaf scale, the LMA is more difficult to estimate with indices. At the canopy scale, efficient indices were determined on a generic simulated database to estimate CHL, LMA, LAI and Bleaf in a general way. These indices were then applied to two Hyperion images (50 plots) on the Fontainebleau and Fougères forests and portable spectroradiometer measurements. They showed good results with an RMSE of 8.2 µg cm? 2 for CHL, 9.1 g m? 2 for LMA, 1.7 m2 m? 2 for LAI and 50.6 g m? 2 for Bleaf. However, at the canopy scale, even if the wavelengths of the calibrated indices were accurately determined with the simulated database, the regressions between the indices and the biophysical characteristics still had to be calibrated on measurements. At the canopy scale, the best indices were: for leaf chlorophyll content: NDchl = (ρ925 ? ρ710)/(ρ925 + ρ710), for leaf mass per area: NDLMA = (ρ2260 ? ρ1490)/(ρ2260 + ρ1490), for leaf area index: DLAI = ρ1725 ? ρ970, and for canopy leaf biomass: NDBleaf = (ρ2160 ? ρ1540)/(ρ2160 + ρ1540).  相似文献   

4.
Fifty-three leaves were randomly sampled on different deciduous tree species, representing a wide range of chlorophyll contents, tree ages, and leaf structural features. Their reflectance was measured between 400 and 800 nm with a 1-nm step, and their chlorophyll content determined by extraction. A larger simulated database (11,583 spectra) was built using the PROSPECT model, in order to test, calibrate, and obtain universal indices, i.e., indices applicable to a wide range of species and leaf structure. To our knowledge, almost all leaf chlorophyll indices published in the literature since 1973 have been tested on both databases. Fourteen canonical types of indices (published ones and new ones) were identified, and their wavelengths calibrated on the simulated database as well as on the experimental database to determine the best wavelengths and, hence, the best performances in chlorophyll estimation for each index types. These indices go from simple reflectance ratios to more sophisticated indices using reflectance first derivatives (using the Savitzky and Golay method). We also tested other nondestructive methods to obtain total chlorophyll concentration: SPAD (Minolta Camera, Osaka, Japan) and neural networks. The validity of the actual PROSPECT model is challenged by our results: Important discordances are found when the indices are calculated with PROSPECT compared to experimental data, especially for some indices and wavelengths. The discordance is even greater when the indices are determined with PROSPECT and applied on the experimental database. A new calibration of PROSPECT is therefore necessary for any study aiming at using simulated spectra to determine or to calibrate indices. The “peak jump” and the multiple-peak feature observed on the first derivative of the reflectances (e.g., in the Red-Edge Inflection Point [REIP] index) has been investigated. It was shown that chlorophyll absorption alone can explain this feature. The peak jump disqualifies the REIP to be a valuable chlorophyll index. A simple modified difference ratio gave the best results among all published indices (cross-validated RMSE=2.1 μg/cm2 on the experimental database). After calibration on the experimental database, modified Simple Ratio (mSR) and modified Normalized Difference (mND) indices gave the best performances (RMSECV=1.8 μg/cm2 on the experimental database). The new Double Difference (DD) index, although not the best on the experimental database (RMSECV=2.9 μg/cm2), has the best results on the larger simulated database (RMSE=3.7 μg/cm2) and is expected to give good results on larger experimental databases. The best reflectance-based indices give better performances than the current commercial nondestructive device SPAD (RMSECV=4.5 μg/cm2). In this leaf-level study, the best indices are very near from each other, so that complex methods are useless: REIP-like, neural networks, and derivative-based indices are not necessary and give worst results than simpler properly chosen indices. These conclusions will certainly be different for a canopy-level study, where the derivative-based indices may perform significantly better than the other ones.  相似文献   

5.
Hyperspectral remote sensing has great potential for accurate retrieval of forest biochemical parameters. In this paper, a hyperspectral remote sensing algorithm is developed to retrieve total leaf chlorophyll content for both open spruce and closed forests, and tested for open forest canopies. Ten black spruce (Picea mariana (Mill.)) stands near Sudbury, Ontario, Canada, were selected as study sites, where extensive field and laboratory measurements were carried out to collect forest structural parameters, needle and forest background optical properties, and needle biophysical parameters and biochemical contents chlorophyll a and b. Airborne hyperspectral remote sensing imagery was acquired, within one week of ground measurements, by the Compact Airborne Spectrographic Imager (CASI) in a hyperspectral mode, with 72 bands and half bandwidth 4.25-4.36 nm in the visible and near-infrared region and a 2 m spatial resolution. The geometrical-optical model 4-Scale and the modified leaf optical model PROSPECT were combined to estimate leaf chlorophyll content from the CASI imagery. Forest canopy reflectance was first estimated with the measured leaf reflectance and transmittance spectra, forest background reflectance, CASI acquisition parameters, and a set of stand parameters as inputs to 4-Scale. The estimated canopy reflectance agrees well with the CASI measured reflectance in the chlorophyll absorption sensitive regions, with discrepancies of 0.06%-1.07% and 0.36%-1.63%, respectively, in the average reflectances of the red and red-edge region. A look-up-table approach was developed to provide the probabilities of viewing the sunlit foliage and background, and to determine a spectral multiple scattering factor as functions of leaf area index, view zenith angle, and solar zenith angle. With the look-up tables, the 4-Scale model was inverted to estimate leaf reflectance spectra from hyperspectral remote sensing imagery. Good agreements were obtained between the inverted and measured leaf reflectance spectra across the visible and near-infrared region, with R2 = 0.89 to R2 = 0.97 and discrepancies of 0.02%-3.63% and 0.24%-7.88% in the average red and red-edge reflectances, respectively. Leaf chlorophyll content was estimated from the retrieved leaf reflectance spectra using the modified PROSPECT inversion model, with R2 = 0.47, RMSE = 4.34 μg/cm2, and jackknifed RMSE of 5.69 μg/cm2 for needle chlorophyll content ranging from 24.9 μg/cm2 to 37.6 μg/cm2. The estimates were also assessed at leaf and canopy scales using chlorophyll spectral indices TCARI/OSAVI and MTCI. An empirical relationship of simple ratio derived from the CASI imagery to the ground-measured leaf area index was developed (R2 = 0.88) to map leaf area index. Canopy chlorophyll content per unit ground surface area was then estimated, based on the spatial distributions of leaf chlorophyll content per unit leaf area and the leaf area index.  相似文献   

6.
The objective of this study is to evaluate whether the retrieval of the leaf chlorophyll content and leaf area index (LAI) for precision agriculture application from hyperspectral data is significantly affected by data compression. This analysis was carried out using the hyperspectral data sets acquired by Compact Airborne Spectrographic Imager (CASI) over corn fields at L'Acadie experimental farm (Agriculture and Agri-Food Canada) during the summer of 2000 and over corn, soybean and wheat fields at the former Greenbelt farm (Agriculture and Agri-Food Canada) in three intensive field campaigns during the summer of 2001. Leaf chlorophyll content and LAI were retrieved from the original data and the reconstructed data compressed/decompressed by the compression algorithm called Successive approximation multi-stage vector quantization (SAMVQ) at compression ratios of 20:1, 30:1, and 50:1. The retrieved products were evaluated against the ground-truth.In the retrieval of leaf chlorophyll content (the first data set), the spatial patterns were examined in all of the images created from the original and reconstructed data and were proven to be visually unchanged, as expected. The data measures R2, absolute RMSE, and relative RMSE between the leaf chlorophyll content derived from the original and reconstructed data cubes, and the laboratory-measured values were calculated as well. The results show the retrieval accuracy of crop chlorophyll content is not significantly affected by SAMVQ at the compression ratios of 20:1, 30:1, and 50:1, relative to the observed uncertainties in ground truth values. In the retrieval of LAI (the second data set), qualitative and quantitative analyses were performed. The results show that the spatial and temporal patterns of the LAI images are not significantly affected by SAMVQ and the retrieval accuracies measured by the R2, absolute RMSE, and relative RMSE between the ground-measured LAI and the estimated LAI are not significantly affected by the data compression either.  相似文献   

7.
Remote sensing estimation of leaf chlorophyll content is of importance to crop nutrition diagnosis and yield assessment, yet the feasibility and stability of such estimation has not been assessed thoroughly for mixed pixels. This study analyses the influence of spectral mixing on leaf chlorophyll content estimation using canopy spectra simulated by the PROSAIL model and the spectral linear mixture concept. It is observed that the accuracy of leaf chlorophyll content estimation would be degraded for mixed pixels using the well-accepted approach of the combination of transformed chlorophyll absorption index (TCARI) and optimized soil-adjusted vegetation index (OSAVI). A two-step method was thus developed for winter wheat chlorophyll content estimation by taking into consideration the fractional vegetation cover using a look-up-table approach. The two methods were validated using ground spectra, airborne hyperspectral data and leaf chlorophyll content measured the same time over experimental winter wheat fields. Using the two-step method, the leaf chlorophyll content of the open canopy was estimated from the airborne hyperspectral imagery with a root mean square error of 5.18 μg cm?2, which is an improvement of about 8.9% relative to the accuracy obtained using the TCARI/OSAVI ratio directly. This implies that the method proposed in this study has great potential for hyperspectral applications in agricultural management, particularly for applications before crop canopy closure.  相似文献   

8.
Hyperspectral water retrievals from AVIRIS data, equivalent water thickness (EWT), were compared to in situ leaf water content and LAI measurements at a semiarid site in southeastern Arizona. Retrievals of EWT showed good correlation with field canopy water content measurements. Statistical analysis suggested that EWT was significantly different among seven community types, from savanna to agriculture. Four band-ratio indexes (NDVI, EVI, NDWI, and NDII) were derived from MODIS showing strong spatial agreement between maps of AVIRIS EWT and MODIS indexes, and good statistical agreement for the range of habitats at the site. Temporal patterns of these four indexes in all vegetation communities except creosote bush and agriculture showed distinct seasonal patterns that responded to the timing and amount of precipitation. Moreover, these time series captured different ecological responses among the different vegetation communities.  相似文献   

9.
Leaf area index (LAI) and leaf chlorophyll content (LCC) are major considerations in management decisions, agricultural planning, and policy-making. When a radiative transfer model (RTM) was used to retrieve these biophysical variables from remote-sensing data, the ill-posed problem was unavoidable. In this study, we focused on the use of agronomic prior knowledge (APK), constructing the relationship between LAI and LCC, to restrict and mitigate the ill-posed inversion results. For this purpose, the inversion results obtained using the SAILH+PROSPECT (PROSAIL) canopy reflectance model alone (no agronomic prior knowledge, NAPK) and those linked with APK were compared. The results showed that LAI inversion had high accuracy. The validation results of the root mean square error (RMSE) between measured and estimated LAI were 0.74 and 0.69 for NAPK and APK, respectively. Compared with NAPK, APK improved LCC estimation; the corresponding RMSE values of NAPK and APK were 13.36 µg cm–2 and 9.35 µg cm–2, respectively. Our analysis confirms the operational potential of PROSAIL model inversion for the retrieval of biophysical variables by integrating APK.  相似文献   

10.
Statistical and radiative-transfer physically based studies have previously demonstrated the relationship between leaf water content and leaf-level reflectance in the near-infrared spectral region. The successful scaling up of such methods to the canopy level requires modeling the effect of canopy structure and viewing geometry on reflectance bands and optical indices used for estimation of water content, such as normalized difference water index (NDWI), simple ratio water index (SRWI) and plant water index (PWI). This study conducts a radiative transfer simulation, linking leaf and canopy models, to study the effects of leaf structure, dry matter content, leaf area index (LAI), and the viewing geometry, on the estimation of leaf equivalent water thickness from canopy-level reflectance. The applicability of radiative transfer model inversion methods to MODIS is studied, investigating its spectral capability for water content estimation. A modeling study is conducted, simulating leaf and canopy MODIS-equivalent synthetic spectra with random input variables to test different inversion assumptions. A field sampling campaign to assess the investigated simulation methods was undertaken for analysis of leaf water content from leaf samples in 10 study sites of chaparral vegetation in California, USA, between March and September 2000. MODIS reflectance data were processed from the same period for equivalent water thickness estimation by model inversion linking the PROSPECT leaf model and SAILH canopy reflectance model. MODIS reflectance data, viewing geometry values, and LAI were used as inputs in the model inversion for estimation of leaf equivalent water thickness, dry matter, and leaf structure. Results showed good correlation between the time series of MODIS-estimated equivalent water thickness and ground measured leaf fuel moisture (LFM) content (r2=0.7), demonstrating that these inversion methods could potentially be used for global monitoring of leaf water content in vegetation.  相似文献   

11.
Remote estimation of chlorophyll content in higher plant leaves   总被引:3,自引:0,他引:3  
Indices for the non-destructive estimation of chlorophyll content were formulated using various instruments to measure reflectance and absorption spectra in visible and near-infrared ranges, as well as chlorophyll contents from several non-related species from different climatic regions. The proposed new algorithms are simple ratios between percentage reflectance at spectral regions that are highly sensitive (540 to 630nm and around 700nm) and insensitive (nearinfrared) to variations in chlorophyll content: R NIR / R 700 and R NIR / R 550. The developed algorithms predicting leaf chemistry from the leaf optics were validated for nine plant species in the range of chlorophyll content from 0.27 to 62.9mug cm -2. An error of less than 4.2 mugcm -2 in chlorophyll prediction was achieved. The use of green and red (near 700nm) channels increases the sensitivity of NDVI to chlorophyll content by about five-fold.  相似文献   

12.
Multimedia Tools and Applications - The current inversion method of maize leaf area index has the problems of long time-consuming inversion, high energy consumption, and low fitting coefficient...  相似文献   

13.
This paper presents a physically-based approach for estimating critical variables describing land surface vegetation canopies, relying on remotely sensed data that can be acquired from operational satellite sensors. The REGularized canopy reFLECtance (REGFLEC) modeling tool couples leaf optics (PROSPECT), canopy reflectance (ACRM), and atmospheric radiative transfer (6SV1) model components, facilitating the direct use of at-sensor radiances in green, red and near-infrared wavelengths for the inverse retrieval of leaf chlorophyll content (Cab) and total one-sided leaf area per unit ground area (LAI). The inversion of the canopy reflectance model is constrained by assuming limited variability of leaf structure, vegetation clumping, and leaf inclination angle within a given crop field and by exploiting the added radiometric information content of pixels belonging to the same field. A look-up-table with a suite of pre-computed spectral reflectance relationships, each a function of canopy characteristics, soil background effects and external conditions, is accessed for fast pixel-wise biophysical parameter retrievals. Using 1 m resolution aircraft and 10 m resolution SPOT-5 imagery, REGFLEC effectuated robust biophysical parameter retrievals for a corn field characterized by a wide range in leaf chlorophyll levels and intermixed green and senescent leaf material. Validation against in-situ observations yielded relative root-mean-square deviations (RMSD) on the order of 10% for the 1 m resolution LAI (RMSD = 0.25) and Cab (RMSD = 4.4 μg cm− 2) estimates, due in part to an efficient correction for background influences. LAI and Cab retrieval accuracies at the SPOT 10 m resolution were characterized by relative RMSDs of 13% (0.3) and 17% (7.1 μg cm− 2), respectively, and the overall intra-field pattern in LAI and Cab was well established at this resolution. The developed method has utility in agricultural fields characterized by widely varying distributions of model variables and holds promise as a valuable operational tool for precision crop management. Work is currently in progress to extend REGFLEC to regional scales.  相似文献   

14.
A satellite sensor image based model suggested by Price was investigated for the estimation of Leaf Area Index (LAI) using data acquired by Linear Imaging Self Scanner-III (LISS-III) onboard Indian Remote Sensing Satellite-1C (IRS-1C) over two wheat growing sites in India (Karnal and Delhi) for crop seasons 1996-97 and 1997-98, respectively. Besides red and near-infrared (NIR) measurements over vegetation canopy, the model only requires a priori crop specific attentuation constants. These constants were computed for wheat using published and field ground reflectance measurements. Application of the model over 36 fields on which ground estimates of LAI were available, indicated a RMSE of 1.28 and 1.07 for the Karnal and Delhi sites, respectively.  相似文献   

15.
16.
It is acknowledged that fluorescence line height (FLH) algorithms are still hampered by the uncertainty of fluorescence peak position. The fluorescence peak moves to longer wavelengths with the increase of chlorophyll a concentration. In this article, the fluorescence enveloped area (FEA), which integrates the fluorescence height and the fluorescence peak position, was used to estimate the chlorophyll a concentration in the coastal waters of the Pearl River Estuary. The FEA algorithm was developed from in situ data of chlorophyll a concentration, total suspended matter (TSM) concentration and above-water remote sensing reflectance, which were collected at 37 sampling stations in the Pearl River Estuary during two cruises. The results showed that the FEA algorithm made a better estimation of chlorophyll a concentration compared with the widely used FLH algorithm and moving fluorescence line height (MFLH) algorithm. These three algorithms were applied to the Pearl River Estuary for retrieval of chlorophyll a concentration from Hyperion data acquired on 21 December 2006. Compared with the FLH and the MFLH, the FEA algorithm showed a rational distribution of the chlorophyll a concentration in the Pearl River Estuary.  相似文献   

17.
Hyperspectral/multiangular data allow the retrieval of important vegetation properties at canopy level, such as the Leaf Area Index (LAI) and Leaf Chlorophyll Content. Current methods are based on the relationship between biophysical properties and retrievals from those spectral bands (from the complete hyperspectral/multiangular information) where specific absorption features are present within the considered spectral range. Furthermore, new sensors such as PROBA/CHRIS provide continuous hyperspectral reflectance measurements that can be considered as a continuous function of wavelength. The mathematical analysis of these continuous functions allows a new way of exploiting the relationships between spectral reflectance and biophysical variables by more powerful and stable mathematical tools, in particular for the retrieval of LAI and chlorophyll content. Within the overall context of the European Space Agency (ESA) Spectra Barrax Campaign (SPARC) experiment, an extensive field study was carried out in La Mancha, Spain, simultaneously to the overflight of airborne imaging spectrometers (AHS, HyMAP, ROSIS) and the overpass of CHRIS‐PROBA and MERIS sensors. During the SPARC‐2003 and SPARC‐2004 campaigns, numerous ground measurements were made in the Barrax study area (covering LAI, fCover, leaf chlorophyll a+b, leaf water content and leaf biomass), together with other complementary data, and a total of 17 CHRIS‐PROBA images were acquired. Representative points have been selected from a total of nine different crops, and also retrieved from the CHRIS‐PROBA images acquired within the days of the field campaign. About 250 reflectance spectra from five different observation angles have been analysed. Hyperspectral reflectance spectra have been adjusted by means of third‐degree polynomial functions between 500 nm and 750 nm, and correlations observed between LAI values and the coefficients of these polynomials yielded LAI as a result of the mathematical fitting. On the other hand, the area under the spectral reflectance curves has been calculated in the interval from 600 nm to 700 nm, the region of the red spectral interval where strong absorption features for chlorophyll have been observed, though areas under the curves are also strongly correlated to the chlorophyll content of the crops. Furthermore, a linear relationship between these areas and the chlorophyll content is proposed in this work. This relationship allows the retrieval of leaf chlorophyll by satellite data, based on the spectral information. Both of the proposed methods are almost independent of the observation angles employed. The high number of in situ measurements acquired simultaneously to satellite overpasses, and the broad available range of data, have allowed validation of both methods, with a large number of data and in a statistically consistent manner.  相似文献   

18.
A field experiment with wheat was conducted with four different nitrogen and four different water stress levels, and hyperspectral reflectances in the 350–2500 nm range were recorded at six crop phenostages for two years (2009–2010 and 2010–2011). Thirty-two hyperspectral indices were determined using the first-year reflectance data. Plant nitrogen (N) status, characterized by leaf nitrogen content (LNC) and plant nitrogen accumulation (PNA), showed the highest R 2 with the spectral indices at the booting stage. The best five predictive equations for LNC were based on the green normalized difference vegetation index (GNDVI), normalized difference chlorophyll index (NDCI), normalized difference705 (ND705) index, ratio index-1dB (RI-1dB) and Vogelman index a (VOGa). Their validation using the second-year data showed high R 2 (>0.80) and ratio of performance to deviation (RPD; >2.25) and low root mean square error (RMSE; <0.24) and relative error (<10%). For PNA, five predictive equations with simple ratio pigment index (SRPI), photochemical reflectance index (PRI), modified simple ratio705 (mSR705), modified normalized difference705 (mND705) and normalized pigment chlorophyll index (NPCI) as predicting indices yielded the best relations with high R 2 > 0.80. The corresponding RMSE and RE of these ranged from 1.39 to 1.13 and from 24.5% to 33.3%, respectively. Although the predicted values show good agreement with the observed values, the prediction of LNC is more accurate than PNA, as indicated by higher RMSE and very high RE for the latter. Hence, the plant nitrogen stress of wheat can be accurately assessed through the prediction of LNC based on the five identified reflectance indices at the booting stage.  相似文献   

19.
The dynamics of foliar chlorophyll concentrations have considerable significance for plant-environment interactions, ecosystem functioning and crop growth. Hyperspectral remote sensing has a valuable role in the monitoring of such dynamics. This study focussed upon improving the accuracy of chlorophyll quantification by applying wavelet analysis to reflectance spectra. Leaf-scale radiative transfer models were used to generate very large spectral data sets with which to develop and rigorously test refinements to the approach and compare it with existing spectral indices. The results demonstrated that by decomposing leaf spectra, the resultant wavelet coefficients can be used to generate accurate predictions of chlorophyll concentration, despite wide variations in the range of other biochemical and biophysical factors that influence leaf reflectance. Wavelet analysis outperformed predictive models based on untransformed spectra and a range of spectral indices. The paper discusses the possibilities for further refining the wavelet approach and for extending the technique to the sensing of a variety of vegetation properties at a range of spatial scales.  相似文献   

20.
This study investigates the applicability of empirical and radiative transfer models to estimate water content at leaf and landscape level. The main goal is to evaluate and compare the accuracy of these two approaches for estimating leaf water content by means of laboratory reflectance/transmittance measurements and for mapping leaf and canopy water content by using airborne Multispectral Infrared and Visible Imaging Spectrometer (MIVIS) data acquired over intensive poplar plantations (Ticino, Italy).At leaf level, we tested the performance of different spectral indices to estimate leaf equivalent water thickness (EWT) and leaf gravimetric water content (GWC) by using inverse ordinary least squares (OLS) regression, and reduced major axis (RMA) regression. The analysis showed that leaf reflectance is related to changes in EWT rather than GWC, with best results obtained by using RMA regression by exploiting the spectral index related to the continuum removed area of the 1200 nm water absorption feature with an explained variance of 61% and prediction error of 6.6%. Moreover, we inverted the PROSPECT leaf radiative transfer model to estimate leaf EWT and GWC and compared the results with those obtained by means of empirical models. The inversion of this model showed that leaf EWT can be successfully estimated with no prior information with mean relative errors of 14% and determination coefficient of 0.65. Inversion of the PROSPECT model showed some difficulties in the simultaneous estimation of leaf EWT and dry matter content, which led to large errors in GWC estimation.At landscape level with MIVIS data, we tested the performance of different spectral indices to estimate canopy water per unit ground area (EWTcanopy). We found a relative error of 20% using a continuum removed spectral index around 1200 nm. Furthermore, we used a model simulation to evaluate the possibility of applying empirical models based on appositely developed MIVIS double ratios to estimate mean leaf EWT at landscape level (). It is shown that combined indices (double ratios) yielded significant results in estimating leaf EWT at landscape level by using MIVIS data (with errors around 2.6%), indicating their potential in reducing the effects of LAI on the recorded signal. The accuracy of the empirical estimation of EWTcanopy and was finally compared with that obtained from inversion of the PROSPECT + SAILH canopy reflectance model to evaluate the potential of both methods for practical applications. A relative error of 27% was found for EWTcanopy and an overestimation of leaf with relative errors around 19%.Results arising from this remote sensing application support the robustness of hyperspectral regression indices for estimating water content at both leaf and landscape level, with lower relative errors compared to those obtained from inversion of leaf and 1D canopy radiative transfer models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号