首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A thermal-hydraulic analysis code which is capable of modeling both internally and externally cooled annular fuel pins was developed. The coolant flow distribution in the annular fuel-based assemblies is adjusted by a pressure drop model allowing for conditions such as non-equal velocity and non-saturated phases. The heat transfer fraction is determined by the ratio of cross-sectional areas distinguished by the radius at which the first derivative of the temperature within the annular fuel equals zero. The code predictions have been compared with calculations from Korea Atomic Energy Research Institute (KAERI) and MIT. The heat transfer fraction difference between the code and RELAP was about 3.9%, and the Departure from Nucleate Boiling Ratio (DNBR) prediction of the code agreed well with the MIT’s result in the region below 3 m. For the application of the code, thermal-hydraulics of thorium-based fuel assemblies loaded with annular seed pins were compared with those of the existing thorium-based assemblies. The pressure drop in the assembly generally increased in the case of annular fuel due to the larger wetted perimeter. In the inner subchannels of the seed pins, mass fluxes were high due to the grid form losses in the outer subchannels. About 43% of the heat generated from the seed pin flowed into the inner subchannel and the rest into the outer subchannel. The minimum DNBRs (MDNBRs) of the annular fuel-based assemblies were higher than those of the existing ones. Because interchannel mixing cannot occur in the inner subchannels, temperatures and enthalpies were higher in the inner subchannels.  相似文献   

2.
3.
以子通道模型和绕丝分布式阻力模型为基础,研发了液态金属快中子增殖堆热工水力子通道分析程序ATHAS-LMR,以对液态金属快中子增殖堆燃料组件中的热工水力现象进行分析。与国外知名实验和类似子通道分析程序比较,结果表明:ATHAS-LMR与实验结果及其他子通道分析程序的结果相近,能够完成包括堵流工况的各种工况下液态金属快中子增殖堆组件的热工水力性能分析。  相似文献   

4.
Critical power performance of reload fuel assemblies has a significant influence on economy in terms of fuel cycle costs and on operational flexibility of boiling water reactors. Well-known advantages in critical power performance attributed to the spacer design have been a stimulus for the development of a new spacer concept. The development was aimed at maximizing the effectiveness of phase separation in the subchannels of the fuel assemblies while minimizing the pressure drop across the spacers. Air-water tests at virtually atmospheric pressure and room temperature were used for a comparative qualitative study of the typical effects on subchannel and film flow downstream of various types of spacer. The most promising design concept proved to be the ULTRAFLOWTM (Siemens trademark) spacer, which is an egg-crate-type spacer with swirl vanes. Critical power and pressure drop performance of the ULTRAFLOW spacer have been measured at the Karlstein test facility of Siemens. The results show that the critical power performance of this spacer is on an average 8% higher than that of the ring spacer and 16% higher than that of the egg-crate spacer without swirl vanes while its pressure drop is lower compared with the above types.  相似文献   

5.
Heat transfer coefficients and hot-spot factors have been determined from measured local temperatures and calculated local mass flux in seven adjacent tubes and associated subchannels of a 61 wire-wrap tube bundle characteristic of the blanket of a GCFR (Gas Cooled Fast Reactor). The bundle consisted of 2.11 cm OD stainless steel tubes on a triangular array with a pitch/diameter ratio of P/D = 1.05. The helical wire of 0.1067 cm in diameter was coiled on the tube with a respective initial orientation of 0–120–240°C and 30.48 cm helical pitch. The experiment used water at atmospheric pressure and temperature as coolant. The resulting dimensionless correlation for heat transfer is applicable to gases and all non-metal fluids in one phase flow when the fluid properties at subchannel bulk temperature are used. This correlation is based on local subchannel mass flux and is applicable to all wire-wrap configurations. Local subchannel mass fluxes were determined with a computer program COBRA IV and used to correlate the average Nusselt number for each subchannel in terms of local Reynolds number and fluid Prandtl number. The differences of up to 19% between that correlation and the one presented in earlier work are discussed in the text. The hot-spot factors on the convective heat transfer coefficient for tubes and subchannels are given as a function of Reynolds number based on a bundle average mass flux and a local subchannel hydraulic diameter. These factors are specific to the bundle configuration and are also dependent on the wire-wrap configuration.  相似文献   

6.
Detailed information about the void fraction distribution in fuel assemblies is increasingly important with the development of high burn-up fuels. A numerical method has been developed for the steady cross-sectional void fraction profile in fuel assemblies using a marching method in the axial direction, considering cross-flows due to lift forces, void diffusion and momentum balance. Uniform pressure in a cross section was assumed under the dominant vertical flow and the secondary lateral flow condition in each subchannel. The merit of this simplified method is its high-performance computation using many BFC meshes for expression of complex void fraction and velocity distributions inside the subchannels. The calculated results were compared with the observed void distributions obtained with X-ray computed tomography in the NUPEC tests of full-scale advanced BWR fuels. The comparison showed the capability of this method for predictions of overall void fraction distributions inside the subchannels. This method will provide a good tool for void fraction profile prediction in high burn-up fuels, while future studies for reliable correlations of lift forces are required over a wide range of flow conditions.  相似文献   

7.
In subchannel analysis, the conservation equations are solved for each channel in a complex fuel bundle, where the effects of fluid exchange between each subchannel are considered. The fluid exchange is commonly referred to as that caused by cross flow. Void drift is considered to be phenomenon resulting from attaining a hydrodynamic equilibrium state. Its mechanism has not been clarified, and the transport due to void drift is therefore estimated through empirical models in conventional subchannel analyses. Therefore, mechanistic model for the void drift phenomenon is required to apply the subchannel analysis to a variety of fuel bundle geometry. In this study, multi-dimensional analysis using two-fluid model was applied to two-phase flow inside a geometry simulating fuel bundle subchannels, for the purpose of clarifying the void drift mechanism. The comparison between the results of the numerical analysis and the experiment confirmed that the reliability of the numerical method used in this study. In this paper, a mechanistic model based on the Stanton number, which expresses the void diffusion coefficient based on the Lahey's proposal, was proposed.  相似文献   

8.
The concept of a high temperature fast reactor cooled by supercritical water (SCFR-H) was developed for achieving high thermal efficiency and a compact reactor system. The core characteristics were obtained from single channel thermal-hydraulic analysis. Thus, it is necessary to carry out subchannel analysis to estimate the effect of local power peaking and cross flows. For this purpose, a subchannel analysis code is developed. It is verified by comparing the results with experimental data of High Conversion Pressurized Water Reactor (HCPWR). Sensitivities of the outlet coolant and cladding temperature to the subchannel flow area and local power peaking are high. One of the reasons is that the ratio of the coolant flow rate of SCFR-H to the power is smaller than that of LWR. Another reason is that, temperature of supercritical water is more sensitive to the enthalpy change above 450°C. The outlet coolant temperature distribution can be flattened by reducing the area of the peripheral subchannels and by enhancing the mixing between the subchannels.  相似文献   

9.
An investigation of the hydraulic behavior of wire-wrapped fuel and blanket assemblies was conducted in an air flow test facility. The test section was a large scale sector (slightly more than one-sixth) of prototypic fuel and blanket assemblies of the Clinch River Breeder Reactor Plant; the scale factor was approximately 11:1 and 5:1 for the fuel and blanket, respectively, thus allowing a very large number of measurements within each subchannel.The purpose of these experiments is discussed along with a brief state of the art review; also discussed is the role of these tests on the core thermal-hydraulic design through calibration and verification of the analytical codes employed in the design. The test section and experimental procedures are illustrated. Experimental results are discussed in detail: static pressure gradients; local and average cross flow through the gap spacing between rods as a function of the wire wrap position and at all typical locations in the assembly; detailed axial velocity mappings in the inboard and peripheral channels. The physical significance of the results is interpreted and the fundamental difference in the hydraulic behavior of fuel and blanket assemblies is pointed out, discussed and explained in terms of fundamental geometric parameters. The application of the fuel assembly data to calibration/verification of subchannel analysis and distributed parameter codes is presented in detail. A quantitative model of the cross flow driving forces is elaborated as the starting point for a comprehensive phenomenological modeling of the hydraulic behavior of wire-wrapped assemblies.  相似文献   

10.
In evaluating the turbulent diffusivity of heat associated with the coolant flow past a grid spacer within an FBR fuel subassembly, a heat diffusion technique is usually employed. However, measurement of subchannel bulk coolant temperature using thermocouples usually involves difficulty due to a steep and non-linear temperature gradient in the subchannels adjacent to a heater pin.A series solution of the heat conduction equation for the coolant flow in subchannels past a grid spacer and a heated section of a dummy fuel pin was derived under a slug flow approximation where the boundary conditions on dummy fuel pins were satisfied by means of the point-matching technique. The solution may be utilized in analyzing the turbulent diffusivity of heat within subchannel coolant flow as a function of distance from a grid spacer based on the measured temperature distribution on the wall of dummy fuel pins, which may be obtained without affecting the subchannel coolant temperature.In an illustrative example, the turbulent diffusivity of heat was most exaggerated at about 50 mm beyond a grid spacer and was approximately five times larger than the corresponding diffusivity without a grid spacer.  相似文献   

11.
This paper presents CFD analyses in heat unsymmetric subchannels and heat symmetric seven-rod bundle geometries of a Super Fast Reactor (Super FR) fuel assembly using STAR-CD. The purpose of CFD analyses in heat unsymmetric subchannels is to evaluate the effect of the power differences on the heat transfer in subchannels of the Super Fast Reactor. For heat symmetric seven-rod bundles, the effects of the gap clearance between the fuel rod and the assembly wall and the displacement of the fuel rod on the circumferential temperature distributions and Maximum Cladding Surface Temperature (MCST) are analyzed. The results show that larger power difference between fuel rods gives larger circumferential temperature difference of the hottest fuel rods. Considering cross flow between edge and ordinary subchannels, 1 mm gap between the fuel rod and the assembly wall is better for small MCST although the circumferential temperature difference in edge subchannel is large. MCST increases exponentially with the displacement. The relative error of displacement should be less than 1% if the allowable increment of MCST due to displacement is less than 6 °C.  相似文献   

12.
The capabilities of the RELAP5-3D code to perform subchannel analyses in sodium-cooled fuel assemblies were evaluated. The motivation was the desire to analyze fuel assemblies with traditional (solid pins) as well as non-traditional (e.g., annular pins with internal cooling, bottle-shape) geometries. Since no current subchannel codes can handle such fuel assembly designs, a new flexible RELAP5-based subchannel model was developed. It was shown that subchannel analysis of sodium-cooled fuel assemblies is indeed possible through the use of control variables in RELAP5. The subchannel model performance was then verified and validated in code-to-code and code-to-experiment analyses, respectively. First, the model was compared to the SUPERENERGY II code for solid fuel pins in a conventional hexagonal lattice. It was shown that the temperature predictions from the two codes agreed within 2% (<3.5 °C). Second, the model was applied to the Oak Ridge 19-pin test, and it was found that the measured outlet temperature distribution could be predicted with a maximum error of 8% (<7 °C). Furthermore, the use of semicircular ribs on the duct wall to flatten the temperature distribution in a traditional hexagonal assembly was explored by means of the newly developed RELAP5-3D subchannel model; the results are reported here as an example of the model capabilities.  相似文献   

13.
Differential thermal expansion and swelling of fuel pins, hexagonal flow ducts and fuel spin spacers, fuel pin bowing between the spacers due to subchannel temperature differentials, and fuel pin bundle bowing due to the cambered hexagonal wrapper tube were analyzed for sodium-cooled fast reactor fuel assemblies.  相似文献   

14.
This paper presents CFD analyses of heat transfer in subchannels of a Super Fast Reactor fuel assembly. Analyses are concentrated on the circumferential temperature distribution on the cladding outer surface because the Maximum Cladding Surface Temperature (MCST) has been a crucial design parameter to evaluate fuel cladding integrity of the Super Fast Reactor. Speziale non-linear high Re k-? model, which can reproduce the anisotropic turbulence flow in non-circular flow channels, with two-layer near-wall treatment is adopted. The results show that heat conduction in the cladding should be considered in the CFD analyses. Larger circumferential temperature gradient occurs on the cladding surface in the edge and corner subchannels than that in the ordinary subchannel because of their special geometries causing larger heterogeneity of mass flow rate distribution inside the subchannels. Improved subchannel configurations to reduce the circumferential temperature gradient are proposed. This study will be a good guideline to the future core design improvement.  相似文献   

15.
Nowadays, coupled 3D neutron-kinetics and thermal-hydraulic core calculations are performed by applying a radial average channel approach using a meshing of one quarter of assembly in the best case. This approach does not take into account the subchannels effects due to the averaging of the physical fields and the loose of heterogeneity in the thermal-hydraulic modelization. Therefore the models do not have enough resolution to predict those subchannels effects which are important for the fuel design safety margins, because it is in the local scale, where we can search the hottest pellet or the maximum heat flux. The aim of this paper is to present a domain decomposition methodology as our choice to asses this multi-scale issue in order to correct the results at the core scale with the ones from the subchannel scale.The UPM advanced multi-scale neutron-kinetics and thermal-hydraulics methodologies being implemented in COBAYA3 include domain decomposition by alternate core dissections for the local 3D fine-mesh scale problems (pin cells/subchannels) and an analytical nodal diffusion solver for the coarse mesh scale coupled with the thermal-hydraulic using a modelization of one channel per assembly or per quarter of assembly.The multi-scale domain decomposition is optimal for the thermal-hydraulic calculations, where the neutronic nodes (assemblies or quarters) can be mapped one-to-one to average channels and fuel rods and the pin cells to the detailed fuel pins and subchannels. For both levels we use the same channel code and, in order to facilitate the multi-scale mesh definition for the TH modules, the development of an input pre-processor has been a relevant part of this work.  相似文献   

16.
Lead–alloy cooled fast reactor is one of the six Gen-IV reactors. It has many attractive features such as excellent natural circulation performance, better shielding against gamma rays or energetic neutrons and potentially reduced capital costs. A natural circulation lead–alloy cooled fast reactor with 10 MWth is under design in China (hereafter called LFR-10MW). Fuel assemblies thermal hydraulic analysis is of vital importance for a successful design. A subchannel analysis code with flow distribution model was used to carry out the thermal hydraulic analysis. This work briefly gave the thermal-hydraulic design for the LFR-10MW and analyzed the thermal-hydraulic characteristics under steady-state condition using the subchannel analysis code. Whole core analysis was performed to locate the hottest fuel assembly using the code. The hottest fuel assembly was analyzed to obtain the cladding temperature, fuel temperature and coolant velocity. The maximum cladding temperature, the maximum fuel center temperature and the maximum coolant velocity are all below the design constraints. These results imply that the thermal-hydraulic design of LFR-10MW is feasible.  相似文献   

17.
钠冷快堆燃料组件热工水力特性数值模拟与分析   总被引:4,自引:4,他引:0  
刘洋  喻宏  周志伟 《原子能科学技术》2014,48(10):1790-1796
利用CFD程序CFX,分别对7、19、37、61根棒组成的三角形排列螺旋绕丝定位的钠冷快堆燃料组件棒束通道进行了热工水力特性的分析研究,并将结果与子通道程序SuperEnergy进行了对比验证。重点考察了棒束通道轴向流动分布、横向流交混效应及子通道轴向温升,分析了定位绕丝的影响。结果表明,绕丝对棒束通道的横向流交混效应、轴向流动分布及子通道温升有着重要影响,且随棒束的增多,通道内的流动趋向复杂化,轴向流动不均匀性有升高趋势。  相似文献   

18.
Thermal characteristics of the reference DUPIC fuel has been studied for its feasibility of loading in the CANDU reactor. Half of the DUPIC fuel bundle has been modeled for a subchannel analysis of the ASSERT-IV Code which was developed by AECL. From the calculated mixture enthalpy, equilibrium quality and void fraction distributions in subchannels of the fuel bundle, it is found that the gravity effect may be pronounced in the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. The asymmetric distribution of the coolant in the fuel bundle is known to be undesirable since the minimum critical heat flux ratio can be reduced for a given value of the channel flow rate. On the other hand, the central region of the DUPIC fuel bundle has been found to be cooled more efficiently than that of the standard fuel bundle in the subcooled and the local boiling regimes due to the fuel geometry and the fuel element power changes. Based upon the subchannel modeling used in this study, the location of minimum critical heat flux ratio in the DUPIC fuel bundle turned out to be very similar to that of the standard fuel when the equivalent values of channel power and channel flow rate are used. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the subchannel-wise mixture enthalpy and void fraction peaks are located in the peripheral region of the DUPIC fuel bundle while those are located in the central region of the standard CANDU fuel bundle. Reduced values of the channel flow rates were used to study the effect of channel flow rate variation. The effect of the channel flow reduction on different thermal-hydraulic parameters have been discussed. This study shows that the subchannel analysis for the horizontal flow is very informative in developing new fuel for the CANDU reactor.  相似文献   

19.
《Progress in Nuclear Energy》2012,54(8):1190-1196
The fuel assemblies of the Pressurized Water Reactors (PWR) are constituted of rod bundles arranged in a regular square configuration by spacer grids placed along its length. The presence of the spacer grids promote two antagonist effects on the core: a desirable increase of the local heat transfer downstream the grids and an adverse increase of the pressure drop due to the constriction on the coolant flow area. Most spacer grids are designed with mixing vanes which cause a cross and swirl flow between and within the subchannels, enhancing even more the heat transfer performance in the grid vicinity. The improvement of the heat transfer increases the departure from the nucleate boiling ratio, allowing higher operating power in the reactor. Due to these important thermal and fluid dynamic features, experimental and theoretical investigations have been carried out in the past years for the development of spacer grid design. More recently, the Computational Fluid Dynamics (CFD) using three dimensional Reynolds Averaged Navier Stokes (RANS) analysis has been used efficiently for this purpose. Many computational works have been performed, but the appropriate numerical procedure for the flow in rod bundle simulations is not yet a consensus. This work presents results of flow simulations performed with the commercial code CFX 11.0 in a PWR 5 × 5 rod bundle segment with a split vane spacer grid. The geometrical configuration and flow conditions used in the experimental studies performed by Karoutas et al. were assumed in the simulations. To make the simulation possible with a limited computational capacity and acceptable mesh refinement, the computational domain was divided in 7 sub-domains. The sub-domains were simulated sequentially applying the outlet results of a previous sub-domain as inlet condition for the next. In this study the kε turbulence model was used. The simulations were also compared with those performed by Karoutas et al. in half a subchannel and In et al. in one subchannel computational domains. Comparison between numerical and experimental results of lateral and axial velocities along of the rod bundle show good agreement for all evaluated heights downstream the spacer grid. The present numerical procedure shows better predictions than Karoutas et al. model especially further from the spacer grid where the peripheral subchannels have more influence in the average flow.  相似文献   

20.
The fuel assemblies of the Pressurized Water Reactors (PWR) are constituted of rod bundles arranged in a regular square configuration by spacer grids placed along its length. The presence of the spacer grids promote two antagonist effects on the core: a desirable increase of the local heat transfer downstream the grids and an adverse increase of the pressure drop due to the constriction on the coolant flow area. Most spacer grids are designed with mixing vanes which cause a cross and swirl flow between and within the subchannels, enhancing even more the heat transfer performance in the grid vicinity. The improvement of the heat transfer increases the departure from the nucleate boiling ratio, allowing higher operating power in the reactor. Due to these important thermal and fluid dynamic features, experimental and theoretical investigations have been carried out in the past years for the development of spacer grid design. More recently, the Computational Fluid Dynamics (CFD) using three dimensional Reynolds Averaged Navier Stokes (RANS) analysis has been used efficiently for this purpose. Many computational works have been performed, but the appropriate numerical procedure for the flow in rod bundle simulations is not yet a consensus. This work presents results of flow simulations performed with the commercial code CFX 11.0 in a PWR 5 × 5 rod bundle segment with a split vane spacer grid. The geometrical configuration and flow conditions used in the experimental studies performed by Karoutas et al. were assumed in the simulations. To make the simulation possible with a limited computational capacity and acceptable mesh refinement, the computational domain was divided in 7 sub-domains. The sub-domains were simulated sequentially applying the outlet results of a previous sub-domain as inlet condition for the next. In this study the k-ε turbulence model was used. The simulations were also compared with those performed by Karoutas et al. in half a subchannel and In et al. in one subchannel computational domains. Comparison between numerical and experimental results of lateral and axial velocities along of the rod bundle show good agreement for all evaluated heights downstream the spacer grid. The present numerical procedure shows better predictions than Karoutas et al. model especially further from the spacer grid where the peripheral subchannels have more influence in the average flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号