首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In situations where the round-trip delay between the mobile and the base stations is smaller than the correlation time of the channel, power control schemes using feedback from the base station can effectively compensate for the fast fading due to multipath. We study several closed-loop power control (CLPC) algorithms by analysis and detailed simulation. We introduce a new loglinear model for analyzing the received power correlation statistics of a CLPC scheme. The model provides analytical expressions for the temporal correlation of the power controlled channel parameterized by the update rate, loop delay, and vehicle speed. The received power correlation statistics quantify the ability of closed-loop power control to compensate for the time-varying channel. To study more complex update strategies, detailed simulations that estimate the channel bit-error performance are carried out. Simulation results are combined with coding bounds to obtain quasi-analytic estimates of the reverse link capacity in a direct-sequence code-division multiple-access (DS-CDMA) cellular system. The quasi-analytic approach quantifies the performance improvements due to effective power control in both single-cell and multicell DS-CDMA systems operating over both frequency-nonselective and frequency-selective fading channels. The effect of nonstationary base stations on the system performance is also presented  相似文献   

2.
This paper deals with the capacity analysis of a direct-sequence code-division multiple-access (DS-CDMA) cellular system in the presence of heterogeneous traffic. We consider a distributed resource allocation strategy that uses a closed-loop control scheme to manage the processing gain, the signal-to-interference ratio (SIR), and the system load. In particular, each base station aims at maintaining the uplink load to its allowable maximum value in order to achieve the maximum throughput. A typical urban cellular system is considered in which the path loss depends on the /spl alpha/th power of the distance, shadowing is log-normally distributed, and short-term fluctuations due to multipath fading are present. Besides, a radio resource-management scheme is considered, which is able to control transmission power and spreading gain values so as to maintain the total received power at the base stations at a maximum allowable level. In this scenario, this paper derives a novel analytical approach for the evaluation of system capacity of DS-CDMA systems in presence of different traffic sources. Bit-error-ratio (BER) and bit-rate requirements have been considered for the different traffic classes. Simulation results have permitted to validate the developed analytical framework on a very comprehensive range of cases. The proposed analysis is finally applied to universal mobile telecommunications system (UMTS)-like traffic classes in order to evaluate the system capacity.  相似文献   

3.
An approach is presented for determining the effect of limiting the power transmitted by a mobile user in a cellular DS-CDMA system with fast power control under multipath fading. It is shown that the system capacity can be increased if very deep fades are not compensated  相似文献   

4.
Power control (PC) on the reverse link of a direct-sequence code-division multiple-access system is essential to increase system capacity. Perfect PC eliminates fluctuations in the received signal level and hence reduces the required signal-to-interference ratio. However, a perfect PC algorithm tracks multipath fading accurately, which results in increasing the intercell interference level. A fixed step PC algorithm becomes almost perfect when the power command rate is too fast compared to the Doppler rate, which is the case for low-mobility users. We investigate the statistics of the intercell interference assuming users are moving slowly. These statistics are then used to find the system capacity. Three parameters that can affect the capacity are considered: the number of the fading process resolvable paths, the maximum transmitted power, and soft handoff  相似文献   

5.
This paper proposes an analysis of outage performance of a Direct Sequence-Code Division Multiple Access (DS-CDMA) wireless system with heterogeneous traffic. Imperfections in closed-loop power control and the activity characteristics of any traffic source in the system are taken into account. For given requirements of signal-to-(noise + interference) ratio and outage probability of every user in the system, the system capacity is derived in terms of the maximum number of users of each class that can be accomodated. The optimization problem is explicitly solved for a system consisting of a single cell and an approach is outlined for solving the optimization problem in a multi-cell system. The analysis is carried out by resorting to various approximations of Multiple Access Interference (MAI), that require different methods for solving the optimization problem and yield different degrees of accuracy. From numerical results it is seen that optimal power allocation is essential to limit the effects of power control imperfections, mainly in the case of non uniform amplitudes of residual power fluctuations. In the second part of the paper, a performance study of fixed step closed-loop power control algorithms is presented. A detailed simulation of the power control loop evidences that fast fading phenomena can not be easily tracked, even at moderate Doppler spread. Statistics of residual power fluctuations are estimated and can be used to support the assumptions in the first part of the paper. Furthermore, second order statistics of the controlled channel are estimated, and second order outage statistics (average rate and duration of outage events) are derived as a quantitative measure of residual channel burstiness.  相似文献   

6.
A novel multiple access scheme based on slow frequency hopping multicarrier direct-sequence code division multiple access (SFH/MC DS-CDMA) is proposed and investigated, which can be rendered compatible with the existing second-generation narrowband CDMA and third-generation wideband CDMA systems. The frequency hopping patterns are controlled by a set of constant-weight codes. Consequently, multirate communications can be implemented by selecting the corresponding sets of constant-weight codes having the required weights controlling the SFH patterns invoked. Two FH schemes, namely random and uniform FH, are considered and their advantages as well as disadvantages are investigated. We assume that the system operates in a multipath fading environment and a RAKE receiver structure with maximum ratio combining (MRC) is used for demodulation. The system's performance is evaluated over the range of multipath Nakagami (1960) fading channels, under the assumption that the receiver has all explicit knowledge of the associated frequency-hopping (FH) patterns invoked. Furthermore, the performance of the SFH/MC DS-CDMA system is compared to that of the conventional single-carrier (SC) DS-CDMA system and that of the conventional MC DS-CDMA system, under the assumptions of constant system bandwidth and of constant transmitted signal power  相似文献   

7.
This paper proposes an analytical study that aims at evaluating the power-control error statistics in wireless direct-sequence code-division multiple-access (DS-CDMA) cellular systems based on an ideal variable step closed-loop power-control scheme. In particular, the cumulative distribution function and the correlation coefficient of the power-control error are derived through a first-order Taylor expansion of the received signal envelope. A novel power-control scheme that exploits the autocorrelation properties of the fading is also proposed, and its performance is analyzed in terms of power-control error statistics. Rayleigh and Rice frequency-selective channel models, which involve the use of a diversity RAKE receiver at the base station, have been taken into account. The proposed analytical approach specifically applies to CDMA systems. A method that aims at estimating the capacity of a DS-CDMA cellular network is also given  相似文献   

8.
Multiple access interference and the mobile radio environment are the primary limitations on the performance of DS/CDMA cellular systems. This paper presents the analysis of a DS/CDMA cellular system operating in a general fading environment. In particular the issues of signal fading, multiple access interference, and power control are addressed. A computationally efficient statistical method is used in the estimation of system performance. It is assumed that the variability of each received signal can be represented by fast Nakagami_m fading plus slower log-normal shadowing. Average bit-error-rate (BER) and outage probability are estimated as system performance indicators. The analysis shows, that as the variability of the fast fading of the received signal reduces, the performance of the system improves. However, when the signal undergoes both fast fading and shadowing, it is largely the shadowing that determines system performance. Use of forward link power control (that compensates for the variability due to shadowing) results in minimal performance improvement. However, in the reverse link significant improvement in performance can be achieved using a similar power control scheme.  相似文献   

9.
We consider initial timing acquisition in discrete-sequence code-division multiple-access (DS-CDMA) when propagation is affected by multipath and fading, and where the base-station broadcasts a synchronization pilot signal in the form of bursts of modulated chips transmitted periodically and separated by long silent intervals. Subject to certain simplifying assumptions, we derive the maximum-likelihood (ML) estimator by solving a constrained maximization problem. Our ML timing estimator has constant complexity per observation sample. The relation to other estimation methods is addressed, and performance comparisons are provided by simulation. The proposed estimator yields good performance independently of the multipath-intensity profile of the channel, provided that the delay spread is not larger than a given maximum spread. Moreover, our estimator is fairly robust to the mismatch in the fading Doppler spectrum and provides good performance for both fast and slow fading  相似文献   

10.
It is well known that power control error (PCE) is a critical issue in CDMA cellular systems. In this paper, the bit error rate (BER) of a direct sequence-code division multiple access (DS-CDMA) receiver with imperfect power control, adaptive beamforming, and voice activity is derived in frequency-selective Nakagami fading channels. We discuss the effects of PCE, Nakagami-m fading parameter, and channel’s multipath intensity profile as average signal strength and rate of average power decay and their effects on the BER performance of DS-CDMA cellular systems. In this paper, the RAKE receiver consists of three stages. In the first stage, with conjugate gradient adaptive beamforming algorithm, the desired users’ signal in an arbitrary path is passed and the inter-path interference is canceled in other paths in each RAKE finger. Also in this stage, the multiple access interference (MAI) from other users is reduced. Thus, the matched filter (MF) can be used for the MAI reduction in each RAKE finger in the second stage. In the third stage, the output signals from the MFs are combined according to the conventional maximal ratio combining principle and then are fed into the decision circuit for the desired user. How the Nakagami fading parameters, power control imperfections, or the number of resolvable paths affect the reverse link capacity of the system is discussed in detail. Analytical and simulation results are also given for systems with different processing gains and number of BSs in the cell-selection process with various Nakagami fading parameters.  相似文献   

11.
A pilot symbol-assisted coherent multistage interference canceller using recursive channel estimation is proposed for DS-CDMA mobile radio cellular system. Since the channel variation caused by fading is recursively estimated at each interference cancelling stage, the accuracy of channel estimation is improved successively. Computer simulation results show that the required Eb/N0 at the average BER of 3×10-2 is improved by ~3.5 dB compared to the matched filter receiver for 10 users and two paths with equal power, and where fdT=10-3 (fd: fading maximum Doppler frequency, T: data symbol duration)  相似文献   

12.
An effect of multipath fading on the performance of a cellular code-division multiple-access (CDMA) system is analyzed in this paper. A wide-sense stationary uncorrelated scattering (WSSUS) channel model and the coherent binary phase-shift keying (BPSK) with asynchronous direct-sequence (DS) spreading signal are assumed in the analysis. The average error probability for both the forward link and reverse link of a cellular CDMA system over a frequency-selective fading channel using a conventional correlation-type receiver and RAKE receiver are derived. The impact of imperfect power control and channel capacity of a cellular CDMA system is also investigated. The closed forms of average error probability derived in the paper can save a lot of computation time to analyze the performance and channel capacity of a cellular CDMA system. The analytical results show that the performance and maximum transmission rate of cellular CDMA systems degrade with an increase in the number of simultaneous users and the number of interfering cells. The signal-to-interface ratio (SIR) for the reverse link derived in this paper can directly describe the interrelationships among a number of paths, number of users, number of interfering cells, fading factors, and maximum variation of a received unfaded signal  相似文献   

13.
This paper proposes an adaptive interference cancelling equalizer (ICE), which not only equalizes intersymbol interference (ISI), but also cancels cochannel interference (CCI) in the received signal in Rayleigh-fading environments, ICE is an adaptive multiuser detector for the frequency-selective fading environment commonly experienced by mobile communication channels. ICE employs a novel detection scheme: recursive least-squares maximum-likelihood sequence estimation (RLS-MLSE), which simultaneously estimates time-varying channel parameters and transmitted signal sequences. Diversity reception is used to enhance the signal detection performance of ICE. A computer simulation of a 40-kb/s QPSK time-division multiple-access (TDMA) cellular mobile radio system demonstrates the possibility of improving system capacity with ICE. Simulations of ICE with and without diversity are carried out under various fading conditions. For the maximum Doppler frequency of 40 Hz, ICE can attain an average bit-error rate (BER) of 10 -2 under a single CCI carrier-to-interference ratio (CIR) of ~14 dB. Moreover, ICE for two independent CCI signals can attain the average BER of 1.5×10-2 with average CIR⩾-10 dB  相似文献   

14.
This paper analyzes the system performance of a truncated closed-loop power-control (TCPC) scheme for uplinks in direct-sequence/code-division multiple-access cellular systems over frequency-selective fading channels. In this TCPC scheme, a mobile station (MS) suspends its transmission when the short-term fading is less than a preset cutoff threshold; otherwise, the MS transmits with power adapted to compensate for the short-term fading so that the received signal power level remains constant. Closed-form formulas are successfully derived for performance measures, such as system capacity, average system transmission rate, MS average transmission rate, MS power consumption, and MS suspension delay. Numerical results show that the analysis provides reasonable accuracy and that the TCPC scheme can substantially improve the system capacity, the average system transmission rate, and power saving over conventional closed-loop power-control schemes. Moreover, the TCPC scheme under realistic consideration of power-control error due to power-control step size, power-control period, power-control command loop delay, and MS velocity is further investigated. A closed-form formula is obtained to accurately approximate the system capacity of the realistic TCPC scheme.  相似文献   

15.
Wireless communication systems are subject to short- and long-term fading of the channel. Instead of the commonly used Nakagami–lognormal model to account for the conditions existing in these shadowed fading channels, a compound probability density function (pdf) model is used to evaluate the performance of wireless systems. While the Nakagami–lognormal lacks a closed-form solution to the pdf of the received power in shadowed fading channels, the compound pdf has an analytical expression for the pdf of the received signal power. The synergy between these two models for the analysis of wireless systems is explored by calculating the bit error rate in a DPSK modem as well as the outage probability in a wireless system in a shadowed fading channel. This is followed by the computation of the outage probability in the general case where both the desired and cochannels are subject to shadowing and fading. The analyses were carried out for both fixed number of cochannels and random number of cochannels. Results demonstrate the usefulness of the compound pdf model for the performance analyses of wireless systems in shadowed fading channels.  相似文献   

16.
17.
Power control has been widely studied and shown to be crucial for the capacity and performance of direct-sequence code-division multiple-access (DS-CDMA) systems. Practical implementations typically employ fast closed-loop power control, where transmitters adjust their transmit powers according to commands received in a feedback channel. The loop delay resulting from the measurements, processing, and transmission of the power control commands can result in oscillations of the transmission powers and lead to degradation in the system performance. In this paper we present new adaptive closed-loop power control algorithms that are able to alleviate the effect of the loop delay. The algorithms are based on self-tuning controllers designed for a log-linear model of the power control process. We carried out computational experiments on a DS-CDMA network using the distributed constrained power control (DCPC) as a reference algorithm. Practical versions of the algorithms are also provided and they were compared with the fixed-step power control (FSPC) algorithm employed in the IS-95 and WCDMA systems. The numerical results indicate that our algorithms can significantly improve the radio network capacity without any increase in power control signaling.  相似文献   

18.
In this paper, we present a new Doppler spread estimation algorithm for broadband wireless orthogonal frequency division multiplexing (OFDM) systems with fast time-varying and frequency-selective Rayleigh or Rician fading channels. The new algorithm is developed by analyzing the statistical properties of the power of the received OFDM signal in the time domain, thus it is not affected by the influence of frequency-domain inter-carrier interference (ICI) introduced by channel variation within one OFDM symbol. The operation of the algorithm doesn’t require the knowledge of fading channel coefficients, transmitted data, or signal-to-noise ratio (SNR) at the receiver. It is robust against additive noise, and can provide accurate Doppler spread estimation with SNR as low as 0 dB. Moreover, unlike existing algorithms, the proposed algorithm takes into account the inter-tap correlation of the discrete-time channel representation, as is the case in practical systems. Simulation results demonstrate that this new algorithm can accurately estimate a wide range of Doppler spread with low estimation latency and high computational efficiency.  相似文献   

19.
In this paper, a bit-error-rate (BER) analysis for closed-loop transmit diversity in a time-selective Rayleigh fading channel containing feedback delay is presented. In the absence of feedback delay, closed-loop transmit diversity always outperforms open-loop transmit for a given transmitted signal energy. This is no longer true in the presence of feedback delay. We derive closed-form expressions of the average BER for this case assuming QPSK and BPSK signaling. The results of the analysis are instrumental for comparing closed-loop with open-loop schemes under given operating conditions. In particular, we demonstrate that, for a given transmitted energy and number of transmit antennas, open-loop outperforms closed-loop at sufficiently fast channel fading. We also show that, for a given transmitted signal energy and fading rate, closed-loop outperforms open-loop for sufficiently large numbers of transmit antennas while the total average transmitted signal energy is kept constant. For some special cases, closed-form expressions for the fading rate at which the performance of open-loop is equal to closed-loop are obtained  相似文献   

20.
The overloaded CDMA schemes exploited in direct sequence CDMA (DS-CDMA) systems are mainly to accommodate a greater number of users than the available spreading factor N. In this paper, a superposition coding CDMA (SPC-CDMA) with unequal error protection (UEP) is proposed as one of the overloaded CDMA schemes for the next generation mobile communication systems. It exploits the available power control in most base stations to adapt the transmitted power of active users in the uplink channel. In this scheme, the active users are divided into G groups and each group consists of K users. The K users share the same spreading sequence and are distinguished by different received power levels. At the receiver side, the system first performs despreading for group detection followed by multiuser receiver to estimate the K user signals in each group. It is shown through simulations that better performance are achieved compared to the conventional DS-CDMA and existing overloaded collaborative spreading CDMA (CS-CDMA) schemes, in additive white Gaussian noise (AWGN) and fading channels. Hence, the proposed scheme maximizes the system capacity K-fold compared to conventional DS-CDMA system without requiring extra spreading codes, with average signal to noise ratio (SNR) cost of only 1dB and 2 dB over AWGN and fading channels respectively at BER of 10?3. On the other hand, for the same N, K and power constraints, SPC-CDMA scheme achieves twofold increase in data rate with 0.7 and 4 dB gains over AWGN and fading channels respectively, compared with overloaded CS-CDMA scheme in the same system capacity. In addition, the proposed scheme can also attain different levels of UEP for different users?? requirements by adjusting their fractions of transmitted powers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号