首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lulu Zhang  Pengchang Zhang 《Vacuum》2010,84(11):1319-540
LiFePO4/C with smaller particle size (0.3-0.6 μm) was synthesized via a two-step vacuum sintering method. X-ray diffraction and scanning electron microscopy were used to detect the phases presented in the composites and observe sample morphology. In addition, AC electrochemical impedance spectroscopy, cyclic voltammetry, along with constant current discharge/charge tests, were used to characterize the electrochemical properties of the composites. It was shown that LiFePO4/C with a single olive crystal structure could deliver discharge capacity of 145.5 and 108.7 mAh g−1 at 0.5 and 6C for the fist cycle, and kept reversible capacity of 147.5 and 117.1 mAh g−1 after 100 cycles.  相似文献   

2.
An effective, simple and green synthesis method based on hydrothermal stripping technique, in which ferrous ion was stripped and precipitated directly from iron (II)-loaded organic phase, has been successfully developed. X-ray diffraction (XRD) and Transmission Electron Microscope (TEM) showed that the samples synthesized at 140-250 °C with raw materials LiOH, H3PO4 and FeSO4·7H2O are well-defined spherical LiFePO4 nanoparticles, and the particle size can be easily controlled by changing the temperature and time. Electrochemical tests showed that the sample has a higher cell performance as a cathode material. Our results suggest that hydrothermal stripping synthesis is a promising method for obtaining spherical LiFePO4 nanoparticles without agglomeration.  相似文献   

3.
郑勇  李建玲  王新东 《材料导报》2016,30(10):15-18, 32
制备了1.1Ah的18650型LiFePO_4/graphite动力电池并研究了温度对电池循环的作用机制。运用解体与非解体的研究手段系统地分析了电池在循环前后的容量以及正负极材料的形貌、结构与电极容量的变化。结果表明,在经过800周循环后55℃下电池的容量衰减显著,循环后电池的Rb与Rct有较为明显的增加。高温下电池的容量衰减主要来自于活性锂离子的损失。对于LiFePO4正极,长周期的循环并未对LiFePO_4的结构造成影响,同时电极的容量未见衰减。而对于石墨负极,容量在55℃下有12.60%的衰减。在高温循环后负极表面发现了铁元素的沉积。铁元素的沉积加速了石墨电极表面膜的增厚并对电池容量的衰退产生影响。  相似文献   

4.
An efficient synthesis based on mechanical activation (MA) was developed for carbon-coated lithium iron phosphate (LiFePO4/C). The conventional MA process was modified by introducing two initial steps of slurry phase blending of the ingredients and solvent removal by rotary evaporation, so as to get an intimate mixing and homogenous dispersion of conductive carbon in the sample. Phase-pure, nanometer-sized particles of the active material covered with a porous, nanometer-sized web of carbon were obtained. LiFePO4/C exhibited remarkably good electrochemical properties when evaluated as cathodes in room temperature lithium cells. An initial discharge capacity of 166 mAh/g (corresponding to 97.6% of theoretical capacity) was achieved at 0.1 C-rate. A very stable cycle performance was also realized; good capacity retention up to 100 cycles was achieved at different current densities.  相似文献   

5.
LiFePO4/C composite with network connections of nano-carbon wires was successfully prepared by using polyvinyl alcohol as carbon source. The composite was characterized by X-ray diffraction and transmission electron microscopic, and its electrochemical performance was investigated by galvanostatic charge and discharge tests. The experimental results show that LiFePO4 grains are tightly connected by the network of nano-carbon wires. Moreover LiFePO4/C composite exhibits high capacity of 168 mAh g−1 applied 15 mA g−1 current density (C/10), excellent cyclic ability and rate capability. When 1500 mA g−1 current density (10C) was applied, the high discharge capacity of 129 mAh g−1 has been obtained at room temperature.  相似文献   

6.
本文以FeSO_4、H_3PO_4和LiOH为原料,采用超临界水热过程制备了亚微米级LiFePO_4颗粒.在此基础上,为了提升制备的LiFePO_4正极材料的物理和电化学性能,对其进行了后续煅烧碳包覆改性研究.同时,通过XRD、SEM、充放电测试、CV和EIS测试手段,对LiFePO_4正极材料改性前后的结构、形貌和电化学性能进行了表征.结果表明:后续固相煅烧碳包覆改性能够显著改善LiFePO_4的结晶性能,减小颗粒粒径,降低电荷传递阻抗,以及大幅度地提升放电容量和循环性能;以PVP为模板剂、蔗糖为碳源,700℃煅烧1 h得到的LiFePO_4/C颗粒粒径小、分布均一,室温0.2 C倍率的首圈放电比容量为153.1 mAh/g,1 C倍率充放电时,放电比容量可保持在144.2 mAh/g,1 C循环50次,容量保持率达到97.1%.  相似文献   

7.
Li0.34La0.51TiO2.94 (LLTO), as a high ionically conductive material, has been coated on the surface of olivine-type LiFePO4 by rheological phase reaction method. The structure and electrochemical properties of the prepared cathode were investigated. The XRD results indicate that the LLTO coating does not affect the structure of LiFePO4 and the LLTO-coated LiFePO4 cathode material still has olivine structure. The electrochemical measurements of LLTO-coated LiFePO4 show that the rate performance of LiFePO4 is greatly improved by the surface treatment. At the room temperature, LLTO-coated LiFePO4 exhibits high discharge capacity of 109.9 mAh g−1 at 10 C, whereas the uncoated LiFePO4 has the discharge capacity less than 80 mAh g−1 at the same rate. Besides, LLTO-coated LiFePO4 also shows better cycle stability and low-temperature performance than that of uncoated LiFePO4.  相似文献   

8.
Jinpeng Sun 《Thin solid films》2009,517(8):2618-4875
Lithium iron phosphate (LiFePO4) thin films were prepared by pulsed laser deposition with an off-axis geometry. Amorphous, needle-like and crystallized granular thin films were prepared on Si and titanium substrates. The preferred orientation of these crystallized LiFePO4 thin films is (120). Microstructures of the deposited films are dependant on the substrate temperature (room temperature, 500 °C and 700 °C) and Ar pressure (5 Pa and 30 Pa) in the chamber. The needle-like film grows following a self-shadowing mechanism. LiFePO4 thin film with high crystallinity shows a voltage plateau which is a typical feature of the phase transition reaction for bulk material, while the sloped profiles are observed clearly in the charging and discharging curves of LiFePO4 thin films with low cystallinity.  相似文献   

9.
Spinel Fe2VO4 was synthesized by solid state method and its properties were characterized using XRD, SEM, TG-DSC and specific surface area measurements. The average size of the particles was 500 nm. TG-DSC test demonstrated that the Fe2VO4 was thermally stable in nitrogen atmosphere within 300 °C. Lithium insertion into the sample at room temperature and 55 °C has been investigated and the highest discharge capacity approached 250 mAh/g at an average voltage of 0.6 V vs Li+/Li. Capacity retention was unexpectedly good at 1C discharge rate at room temperature and 55 °C. At 5C discharge rate, the specific capacity was still 136 mAh/g. The results show that the Fe2VO4 is a promising anode material due to its high specific capacity, thermal stability and rate performances.  相似文献   

10.
The electrochemical performance of LiMn2O4 is improved by the surface coating of nano-Li3PO4 via ball milling and high-temperature heating. The Li3PO4-coated LiMn2O4 powders are characterized by X-ray diffraction and high-resolution transmission electron microscopy (HRTEM). At 55 °C, capacity retention of 85% after 100 cycles was obtained for Li/Li3PO4-coated LiMn2O4 electrode at 1C rate, while that of pristine sample was only 65.6%. The Li/Li3PO4-coated LiMn2O4 electrode also showed improved rate capability especially at high C rates. At 5C-rates, the delivered capacities of pristine and Li3PO4-coated LiMn2O4 electrodes were 80.7 mAh/g and 112.4 mAh/g, respectively. The electrochemical impedance spectroscopy (EIS) indicates that the charge transfer resistance for Li/Li3PO4-coated LiMn2O4 cell was reduced compared to Li/LiMn2O4 cell.  相似文献   

11.
Orthorhombic structure FeF3 was synthesized by a liquid-phase method. The FeF3/MoS2 for the application of cathode material of lithium-ion battery was prepared through mechanical milling with molybdenum bisulfide. The structure and morphology of the FeF3/MoS2 were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical behavior of FeF3/MoS2 was studied by charge/discharge, cyclic voltammetry and electrochemical impedance spectra measurements. The results show that the prepared FeF3/MoS2 was typical orthorhombic structure, uniform surface morphology, better particle-size distribution and excellent electrochemical performances. The initial discharge capacity of FeF3/MoS2 was 169.6 mAh·g− 1 in the voltage range of 2.0-4.5 V, at room temperature and 0.1 C charge-discharge rate. After 30 cycles, the capacity retention is still 83.1%.  相似文献   

12.
唐义会  曹传宝  文捷  翟华章  朱鹤孙 《功能材料》2004,35(Z1):1864-1866
固相反应法合成了新型锂离子电池正极材料LiFePO4,组装成电池后,室温下(23℃)初始比容量为110mAh/g.以蔗糖分解在LiFePO4电池材料的颗粒间覆碳的方法制备了改性的LiFePO4,对LiFePO4进行表面覆碳改性后其电化学性能包括比容量和充放电效率两方面都得到提高.覆碳后正极材料的初始比容量在室温下达到了140mAh/g,比覆碳前增加了30mAh/g,在循环20周后比容量仍维持在125mAh/g左右;覆碳后正极材料的平均充放电效率在23℃和50℃下分别为91%和93%.  相似文献   

13.
The kinetic properties of monoclinic lithium vanadium phosphate were investigated by potential step chronoamperometry (PSCA) and electrochemical impedance spectroscopy (EIS) method. The PSCA results show that there exists a linear relationship between the current and the square root of the time. The D?Li values of lithium ion in Li3-xV2(PO4)3 under various initial potentials of 3.41, 3.67, 3.91 and 4.07 V (vs Li/Li+) obtained from PSCA are 1.26 × 10− 9, 2.38 × 10− 9, 2.27 × 10− 9 and 2.22 × 10− 9 cm2·s− 1, respectively. Over the measuring temperature range 15-65 °C, the diffusion coefficient increased from 2.67 × 10− 8 cm2·s− 1 (at 15 °C) to 1.80 × 10− 7 cm2·s− 1 (at 65 °C) as the measuring temperature increased.  相似文献   

14.
LiNi0.5Mn1.5O4 cathode material was synthesized from a mixture of LiCl, NiCl2?6H2O and MnCl2?4H2O with 70 wt.% oxalic acid by a low-temperature solid-state method. The calcination temperature was adjusted to form disorder Fd3m structure at 700-800 °C for 10 h.XRD patterns and FTIR spectroscopy showed that the LiNi0.5Mn1.5O4 cathode material exhibited an impurity-free spinel Fd3m structure. Electrochemical property results revealed that the LiNi0.5Mn1.5O4 cathode material charged at 1C rate to 4.9 V and discharged at 2 and 3 C to 3.5 V delivered initial capacity of 120 mAh/g and maintained a capacity retention over 80% at room temperature after 1000 charge/discharge cycles.  相似文献   

15.
以碳酸锂、草酸亚铁、磷酸二氢铵、葡萄糖为原料,添加不同的过渡金属乙酸盐(乙酸锰、乙酸钴、乙酸镍、乙酸锌),在氩气保护下采用高温固相法制备LiFePO_4/C复合材料。采用X射线衍射、扫描电子显微镜、同步热分析、恒电流充放电、电化学阻抗、循环伏安等方法研究掺杂金属离子及掺杂量对LiFePO_4/C晶体结构和电化学性能的影响。结果表明,LiFe_(0.9)M_(0.1)PO_4/C(M=Mn、Co、Ni、Zn)样品的晶体结构均与橄榄石型LiFePO_4相同。掺杂过渡金属阳离子可以提高LiFePO_4/C的还原电位,降低氧化电位,缩小氧化还原峰间距,提高化学反应的可逆性。掺杂后的样品在5C下的放电性能较好,以LiFe0.9Ni0.1PO4/C的放电容量最高,达到89mAh/g。  相似文献   

16.
Well dispersed Fe3O4 nanoparticles with a mean diameter of about 160 nm were synthesized by a simple hydrothermal method in the presence of sodium sulfate. The products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Raman spectrum, and Fourier transform infrared spectra (FTIR). Electrochemical properties of the nanostructured Fe3O4 as cathode electrodes of lithium ion battery were studied by conventional charge/discharge tests, showing a high initial discharge capacity of 1267 mA h g− 1 at a current density of 0.1 mA cm− 2.  相似文献   

17.
Trimanganese tetraoxide (Mn3O4) nanoparticles have been synthesized via hydrothermal process. Nevertheless, homogeneous nanoparticles of Mn3O4 with platelet lozange shape were obtained. The crystallite size ranged from 40 to 70 nm. The Mn3O4 product was investigated by X-ray diffraction, transmission electron microscopy (MET), and impedance spectroscopy. Electrical conductivity measurements showed that the as-synthesized Mn3O4 nanomaterial has a conductivity value which goes from 1.8 10−7 Ω−1 cm−1 at 298 K, to 23 10−5 Ω−1 cm−1 at 493 K. The temperature dependence of the conductivity between 298 and 493 K obeys to Arrhenius law with an activation energy of 0.48 eV.  相似文献   

18.
Li2.6Co0.4 - xCuxN (x = 0, 0.15) anode materials were prepared by conventional solid state reaction. Between both materials, Li2.6Co0.25Cu0.15N exhibited better capacity retention than that of Li2.6Co0.4N. According to electrochemical impedance spectroscopy, the better cycling behavior of Li2.6Co0.25Cu0.15N has been attributed to the improvement in interfacial compatibility between the electrode and electrolyte interface. A possible explanation to this was given. Li2.6Co0.4 - xCuxN/Cu0.04V2O5 full-cells were assembled to investigate the reliability of Li2.6Co0.4 - xCuxN anode materials in practical applications. The Li2.6Co0.25Cu0.15N/Cu0.04V2O5 cell delivered a specific capacity of 260 mA h g 1, and a specific energy of 505.7 mW h g 1, which was much higher than that of C/LiCoO2 lithium ion batteries.  相似文献   

19.
20.
Yan Feng  Feng Hou 《Materials Letters》2009,63(15):1338-1340
Chromium was incorporated into lithium trivanadate by an aqueous reaction followed by heating at 100 °C. This Cr doped LiV3O8 as a cathode for lithium ion batteries exhibits 269.9 mAh g− 1 at first discharge cycle and remains 254.8 mAh g− 1 at cycle 100, with a charge-discharge current density of 150 mA g− 1 in the voltage range of 1.8-4.0 V. The Cr-LiV3O8 cathode show excellent discharge capacity, with the retention of 94.4% after 100 cycles. These result values are higher than previous reports indicating that Cr-LiV3O8 prepared by our low temperature synthesis method is a promising cathode material for rechargeable lithium ion batteries. The enhanced discharge capacity and cycle stability of Cr-LiV3O8 cathode indicate that chromium atoms promote lithium transfer or intercalation/deintercalation during the electrochemical cycles and improve the electrochemical performances of LiV3O8 cathode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号