首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 261 毫秒
1.
The study of photoluminescence and nonlinear optical properties of red (emitted at 650 nm), yellow (emitted at 570 nm) and green (emitted at 530 nm) CdTe quantum dots (QD) spin coated on quartz substrate that had been prepared by changing the ratio between octadecylphosphonic acid and octadecence within 0.1:1–1:1 was carried out. Spectral width of the emission spectra indicates an enhancement with the increasing of QDs sizes, namely ca. 25, 28 and 50 nm for the QD size of 2.5, 3.5 and 5 nm, correspondingly. The entire QDs samples feature a spherical morphology with a relatively narrow size distribution. The optical second harmonic generation (SHG) stimulated by coherent bicolor treatment at 1,540 nm and its second harmonic generation was studied versus the laser light power density and incident angle.  相似文献   

2.
《Materials Letters》2007,61(8-9):1619-1621
In this work, it has been demonstrated that metal–semiconductor–metal (MSM) photodiodes (PDs) with InGaN self-assembled quantum dots (QDs) were fabricated and compared with conventional InGaN MSM photodiodes. The scanning near-field optical microscope (SNOM) results revealed that such InGaN nanostructures could have better absorption for the near-field light with the wavelength of 457–514 nm. It was found that the InGaN QD photodiode with lower dark current can operate in the normal incidence mode; we could achieve a much larger photocurrent to dark current contrast ratio from MSM photodiodes with nanoscale InGaN quantum dots. It was also found that the measured responsivity of MSM photodiodes with QDs and without QDs approximated to the same in the range of 390–460 nm. Furthermore, the photodiodes with QDs showed higher spectral response than that of the photodiodes without QDs at wavelengths < 350 nm and > 480 nm.  相似文献   

3.
Electrical and the optical properties of organic light-emitting devices (OLEDs) fabricated utilizing core/shell CdSe/ZnS quantum dots (QDs) embedded in a polyvinylcarbazole (PVK) layer were investigated. An abrupt increase of the current density above an applied voltage of 12 V for OLEDs consisting of Al/LiF/4,7-diphenyl-1,10-phenanthroline/bis-(2-methyl-8-quinolinolate)-4-(phenylphenolato) aluminium/[CdSe/ZnS QDs embedded in PVK]/poly(3,4-ethylenedioxythiophene) and poly(styrenesulfonate)/ITO/glass substrate was attributed to the existence of the QDs. Photoluminescence spectra showed that the peaks at 390 and 636 nm corresponding to the PVK layer and the CdSe/ZnS QDs were observed. While the electroluminescence (EL) peak of the OLEDs at low voltage range was related to the PVK layer, the EL peak of the OLEDs above 12 V was dominantly attributed to the CdSe/ZnS QDs. The Commission Internationale de l’Eclairage (CIE) chromaticity coordinates of the OLEDs at high voltages were (0.581, 0.380) indicative of a red color. When the holes existing in the PVK layer above 12 V were tunneled into the CdSe/ZnS QDs, the holes occupied by the CdSe/ZnS QDs combined with the electrons in the PVK layer to emit a red color related to the CdSe/ZnS QDs.  相似文献   

4.
The synthesis and photoluminescence (PL) properties of aqueous CdTe/ZnO core/shell quantum dots (QDs) have been investigated by using thiolglycolic acid as a capping reagent. The highlighted contribution of the present study was CdTe QDs coated with a ZnO shell by controlling the hydrolysis process of Zn(OAc)2. The QDs benefitted from overcoming the high lattice mismatch between CdTe and ZnO. The PL peak wavelength of the CdTe/ZnO QDs with high PL quantum yields up to 88% was located in a range between 547 and 596 nm by adjusting the size of CdTe cores and the thickness of ZnO shells. The results of X-ray diffraction analysis and transmission electron microscopy observation indicate that the dot-shaped CdTe/ZnO QDs (566 nm) with an average size of 2.2 nm in diameter belong to the cubic CdTe crystal structure. Due to the passivation of surface defects, it is found that the luminescence decay curves accord with a biexponential decay model of exciton and trap radiation behavior. The average PL lifetimes of CdTe (571 nm) and CdTe/ZnO (596 nm) QDs at room temperature are 27.3 and 35.1 ns, respectively.  相似文献   

5.
In this study, CdSe–ZnS/poly(lactic acid) (PLA) nanocomposite films, containing different concentrations of surface-modified CdSe–ZnS quantum dots (QDs), were prepared via a solution casting method. The optical microstructural and thermal properties of the as-prepared QDs/PLA films were investigated. The QDs/PLA films exhibited strong and stable photoluminescence (PL) intensity with concentration dependent amplitudes. The transmission electron microscopy (TEM) pictures revealed that QDs of ∼5 nm diameter were uniformly dispersed in the PLA matrix. According to the results of thermogravimetric analysis, the weight-loss onset temperature of PLA clearly decreased with the QD content. A combination of Fourier transform infrared (FT-IR) spectroscopy, X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) results suggested that the QDs exhibit obvious nucleation activity on the crystallization behavior of the PLA matrix. This research provides useful information to the foundations of practical applications of QDs/PLA nanocomposites as fluorescent and biodegradable functionalized materials.  相似文献   

6.
CdS x Se1−x nanoparticles or quantum dots (QDs) were grown in borosilicate glass by a two-step heat-treatment process from a melt-quenched color filter glass. We incorporate the results of optical absorption, steady-state photoluminescence (PL), and resonant Raman spectroscopies in the study of growth kinetics of CdS x Se1−x QDs. A modeling of PL spectra employing two Gaussian emission bands and a quantized-state effective mass model in the strong confinement regime reveals that (i) the average particle size ranges from 1.7 to 8.5 nm, (ii) the size dispersion narrows down to 0.22 nm for a single sample, and (iii) QDs form by diffusion-limited growth. We presume that size-dependent higher energy PL band close to the asymptotic absorption edge is due to surface-assisted electron-hole recombination since the difference between optical absorption and PL bands decreases from 239 to 122 meV with increasing average radius.  相似文献   

7.
Indium phthalocyanine–CdSe/ZnS quantum dots (QDs) nanocomposites (InPc–CdSe/ZnS) of three sizes (5.57, 8.12 and 8.75 nm) were synthesized according to known procedures. The particle size of the CdSe/ZnS QDs alone are 3.95, 6.02, and 6.66 nm, and are denoted as QD1, QD2 and QD3 respectively. The nonlinear absorption (NLA) properties of the nanoconjugates (InPc–CdSe/ZnS) were investigated with nanosecond laser radiation at 532 nm wavelength. Enhanced NLA properties compared to the InPc alone were observed in the conjugates. The NLA was found to increase with the size of the CdSe/ZnS particles attached to the phthalocyanine. The observed increase was due to the availability of more free-carrier ions in the larger QDs, thus giving rise to the enhanced free-carrier absorption. The measured free-carrier absorption cross-sections (σFCA) are 1.10, 1.65 and 1.95 (×10−19 cm2) for InPc-QD1, InPc-QD2 and InPc-QD3 respectively. The nanoconjugates (InPc–CdSe/ZnS) showed a much lower threshold for optical limiting together with a much lower transmission at high fluences, than the previously reported nanocomposite limiters.  相似文献   

8.
A cross-disciplinary protocol of characterization by joint techniques enables one to closely compare chemical and physical properties of CdS quantum dots (QDs) grown by single source precursor methodology (SSPM) or by microwave synthetic route (MWSR). The results are discussed in relation with the synthesis protocols. The QD average sizes, reproducible as a function of the temperatures involved in the growth processes, range complementarily in 2.8–4.5 nm and 4.5–5.2 nm for SSPM and MWSR, respectively. Hexagonal and cubic structures after X-ray diffraction on SSPM and MWSR grown CdS QDs, respectively, are tentatively correlated to a better crystalline quality of the latter with respect to the further ones, suggested by (i) a remarkable stability of the MWSR grown QDs after exposure to air during several days and (ii) no evidence of their fragmentation during mass spectrometry (MS) analyses, after a fair agreement between size dispersities obtained by transmission electron microscopy (TEM) and MS, in contrast with the discrepancy found for the SSPM grown QDs. Correlatively, a better optical quality is suggested for the MWSR grown QDs by the resolution of n > 1 excitonic transitions in their absorption spectra. The QD average sizes obtained by TEM and deduced from MS are in overall agreement. This agreement is improved for the MWSR grown QDs, taking into account a prolate shape of the QDs also observed in the TEM images. For both series of samples, the excitonic responses vs the average sizes are consistent with the commonly admitted empirical energy-size correspondence. A low energy PL band is observed in the case of the SSPM grown QDs. Its decrease in intensity with QD size increase suggests a surface origin tentatively attributed to S vacancies. In the case of the MWSR grown QDs, the absence of this PL is tentatively correlated to an absence of S vacancies and therefore to the stable behavior observed when the QDs are exposed to air.  相似文献   

9.
A transparent poly (vinyl alcohol) (PVA) nanocomposite thin film (30–50 nm) reinforced with core/shell cadmium selenide (CdSe)/zinc sulfide (ZnS) quantum dots (QDs) was fabricated by a drop-casting method. A narrow peak at ~556 nm observed in the UV–vis spectrum indicates the uniformly dispersed QDs in the PVA matrix. FT-IR analysis indicates the interaction between the QDs and the polymer matrix. Both PVA and PVA-QDs nanocomposite thin films show polarized light dependent absorption properties with several different absorption peaks. As compared to the only fluorescent emission peak at 574 nm of QDs, the pure PVA and PVA-DDs nanocomposites show an excitation wavelength dependent fluorescent emission property.  相似文献   

10.
We present a facile method of incorporating CdSe/ZnSe core/shell quantum dots (QDs) into 600 nm diameter pores of a two-dimensional lattice made by interference lithography of spin-coated SU-8 photoresist on Si substrates. The luminescent assembly can be formed in an area as large as 1 cm2. Confocal luminescence microscopy shows that the QDs can readily fill via capillary action into hexagonal hole arrays with a depth of about 3 µm and a periodicity of about 1 µm. The fabricated large scale architectures are expected to be useful for optical devices such as light emitting diodes.  相似文献   

11.
The germination of Lycopersicon esculentum tomato seeds that had been planted with water containing TiO2QDs1(2.9 nm), TiO2QDs2 (3.2 nm), and TiO2 (Degussa) without no phytotoxicity effect on the germination process. TiO2QDs1 (2.9 nm) and TiO2QDs2 (3.2) were successfully synthesized at low calcination temperatures: 280 and 310 0C for 180 min, respectively, using the sol–gel process. The synthesized TiO2QDs1(2.9 nm) and TiO2QDs2 (3.2 nm) were characterized by: XRD, FE-SEM, HRTEM, and EDX to analyze the structure, shape, and size of the generated TiO2QDs samples. The photocatalytic activities of the TiO2QDs in the photodegradation of Reactive yellow 145 dye as a commercial dye and actual industrial wastewater samples using both a Xenon lamp light irradiation source and direct sunlight were assessed. They showed highly photocatalytic performances recorded at 85 to 90 percent, and the photodegradation rate was still distinguishable till ten repetition times for the photodegradation process of the reactive yellow 145 dye and till six repetition times for the natural industrial wastewater samples used in this study. Also, an analysis of the photodegradation efficiency of the Reactive yellow 145 dye has been done in terms of the positive effect on the energy consumption ratio (EE/O) as pricing estimations.  相似文献   

12.
We present a facile hydrothermal approach to synthesize high-quality cysteamine (CA)-capped CdTe quantum dots (QDs). Oil bath heating and vigorous stirring were used to obtain better heat transfer and more homogenous solutions during the synthesis process. By this approach, the quantum yield (QY) of the resultant QDs can reach as high as 19.7%, which is the best reported data for CA-stabilized CdTe QDs. The synthesis process is under a high concentration of the precursor (> 10 mM), suggesting the potential of this route to be used in mass production of CA-capped CdTe QDs. Moreover, the pH-dependent optical properties of CA-capped CdTe QDs were also investigated.  相似文献   

13.
Cadmium-free I-III-VI quantum dots (QDs), represented by Cu-In-S (CIS), are widely investigated for their non-toxicity and tunable emission properties. In this work, Zn-Cu-In-S (ZCIS) alloyed QDs were synthesized via a solvothermal approach by heating up a mixture of the corresponding metal precursors and sulphur powder with dodecanethiol in oleylamine media, and the fluorescent intensity was greatly enhanced by coating ZnS (ZS) shell. By changing the ratio of Cu, the as prepared ZCIS-ZS QDs showed composition-tunable photoluminescent (PL) emission over the visible spectral window from about 500 nm to 620 nm, which is much wider than that of CIS QDs. Moreover, the influence of excitation wavelength, reaction temperature and time on the optical properties of the ZCIS-ZS QDs was also studied. This research provides a feasible and simple approach to prepare ZCIS-ZS QDs with large tunable spectral range on visible region, which could greatly contribute to the development of potential applications due to their non-toxicity and excellent optical properties.  相似文献   

14.
We investigated the morphological and optical properties of InAs quantum dots (QDs) grown by using periodic arsine interruption (PAI) and compared them with QDs grown conventionally. In the conventional growth, the formation of large islands was observed, which suppresses the nucleation and growth of QDs. Furthermore, the growth of capping layers was significantly degraded by these large islands. On the other hand, in the PAI growth, the formation of large islands was completely suppressed, resulting in the increase of the density and aspect ratio of QDs and the uniform growth of capping layers. As a result of photoluminescence (PL) measurements, we found that the emission efficiency was enhanced and the full-width-half-maximum was reduced to 32 meV. The temperature dependence of these optical properties also revealed the enhancement of the uniformity of QDs grown by the PAI method.  相似文献   

15.
Enhanced nonlinear optical properties (in dimethyl sulphoxide) is observed for 2(3),9(10),16(17),23(24)-tetrakis-(4-aminophenoxy)phthalocyaninato indium(III) chloride (InPc) when covalently linked to CdSe/ZnS or CdSe quantum dots (QDs). The experimental nonlinear optical parameters were obtained from Z-Scan measurements. Contributions from two-photon absorption (2PA) due to the InPc, and free-carrier absorption (FCA) by QDS have been identified as the main factors responsible for the enhanced optical limiting. The effective nonlinear absorption coefficient for InPc-CdSe/ZnS was found to be 700.0 cm/GW. The FCA cross-sections for InPc-CdSe/ZnS and InPc-CdSe composites were found to be 1.52 × 10−19 and 6.00 × 10−20 cm2 respectively. A much lower limiting threshold of 92 mJ cm−2 was observed for InPc-CdSe/ZnS nanocomposite, hence, making it suitable for use as optical limiting material. Density Functional Theory (DFT) calculations on similar phthalocyanine-quantum dots system was modeled in order to explain the enhancement in the observed nonlinear optical properties of the Pc in the presence of the QDs. The experimentally determined nonlinear optical properties are well within the range of the DFT calculated properties.  相似文献   

16.
The synthesis of quantum dots (QDs) using wet chemistry with photoluminescent (PL) properties suitable to be used as biomarkers is a challenge yet to be overcome. Thus, this study demonstrates that the optical properties of aqueous colloidal semiconductor QDs can be engineered by altering the stoichiometric ratio of reagents achieving PL behavior comparable to systems using core–shell heterostructures. Here, it is reported the “bottom-up” approach for preparing quantum dot-polymer conjugates. A straightforward one-pot synthesis of CdSe nanocrystals was conducted using carboxylic functionalized poly (vinyl alcohol) as capping ligand by methods of aqueous colloidal chemistry at room temperature. Different molar ratios of reagents (Cd2+:Se2−) were prepared for investigating the effect on the kinetics of nucleation and growth of colloidal quantum dots (CQD) and their respective influence on the density of defects. These systems were characterized by UV–vis Spectroscopy, Photoluminescence Spectroscopy, and Transmission Electron Microscopy. Small QDs were produced with average particle size of 2.9 nm. The results have showed the influence of the ratio of the reagents on the photoluminescent behavior of the CQDs. Thus, a relatively facile colloidal route was developed for synthesizing water-soluble quantum dots-polymer conjugates that may potentially offer countless choices in nanotechnology for biomedical applications.  相似文献   

17.
Photoluminescence (PL), PL excitation (PLE), and time-resolved PL were used to study effects of InGaAs layers on the optical properties of InAs/GaAs quantum dots (QDs). A rich fine structure in the excited states of confined excitons (up to n = 4 quantum states) was observed, providing useful information to study the quantum states in the InAs/GaAs QDs. A significant redshift of the PL peak energy for the QDs covered by InGaAs layers was observed, attributing to the decrease of the QD strain and the lowing of the quantum confinement.  相似文献   

18.

Abstract  

The successful transfer of oil-soluble quantum dots (QDs) into water is critical for many of their bioapplications. In this paper, the impacts of four various strategies (i.e., via micelles, nanohydrogels, amphiphilic polymers and water-soluble thiol small molecules) on the phase transfer of oil-soluble oleic acid-capped NIR-emitting PbS QDs into water were evaluated systematically. It was found that the process of water transfer and the optical property of the resulting water-soluble QDs highly hinge on the type of the phase transfer agents used due to their different interactions with QD surface. Among all these phase transfer agents, SOC micelles and glutathione (thiol) molecules are more favorable for retaining the optical property of the initial oil-soluble PbS QDs. As a result, the obtained water-soluble QDs show strong NIR fluorescence (PL QY > 30% in water). However, in the case of nanohydrogel and amphiphilic polymers, the corresponding water-soluble ones display relatively weak fluorescence emission. These results suggest fully that “correct” phase transfer agents should be selected in order to obtain high-quality water-soluble PbS QDs. The possible reasons for this obvious difference were further analyzed and revealed. Besides, the preliminary results obtained also indicate that the NIR-emitting PbS QDs will be a potential probe in the in vivo biomedical imaging of small animals.  相似文献   

19.
An extracellular biosynthesis method has been developed to prepare cadmium selenide (CdSe) quantum dots (QDs) with strong fluorescence emission by incubating cheap Cd and Se inorganic salts with Escherichia coli (E.coli) bacteria. Ultraviolet–visible absorption spectra, photoluminescence (PL) spectra, and high‐resolution transmission electron microscopy analysis showed that the biosynthesised CdSe QDs have an average size of 3.1 nm, the excellent optical properties with fluorescence emission around 494 nm, and the good crystallinity. It was found that addition of 80 mg of mercaptosuccinic acid resulted in the formation of CdSe QDs with highest PL intensity. Furthermore, Fourier‐transform infrared spectra of as‐synthesised CdSe QDs confirmed the presence of a surface protein capping layer. The biosynthesised CdSe QDs were incorporated into the yeast cells as illustrated by laser confocal scanning microscopy images, showing a great potential in bio‐imaging and bio‐labelling application.Inspec keywords: microorganisms, molecular biophysics, fluorescence, visible spectra, nanofabrication, nanobiotechnology, proteins, cellular biophysics, nanostructured materials, wide band gap semiconductors, cadmium compounds, semiconductor quantum dots, II‐VI semiconductors, transmission electron microscopy, photoluminescence, optical microscopy, ultraviolet spectra, Fourier transform infrared spectra, biological techniques, semiconductor growthOther keywords: biocompatible CdSe quantum dots, extracellular biosynthesis method, cadmium selenide quantum dots, high‐resolution transmission electron microscopy analysis, biosynthesised CdSe QDs, Fourier‐transform infrared spectra, Escherichia coli, ultraviolet‐visible absorption spectra, PL intensity, fluorescence emission, photoluminescence spectra, optical properties, surface protein capping layer, laser confocal scanning microscopy images, bioimaging, biolabelling application, yeast cells, f mercaptosuccinic acid, CdSe  相似文献   

20.
Zinc selenide (ZnSe) quantum dots (QDs) with the hexagonal wurtzite structure were successfully prepared using a safe, controllable ethylenediamine-mediated solvothermal method in the absence of surfactants. This new synthesis process of the wurtzite ZnSe QDs was described and the growth mechanism of QDs was proposed. The room-temperature photoluminescence (PL) spectrum of the wurtzite ZnSe QDs (about 4 nm) showed a strong near-band-edge emission peak at 422 nm. The near-band-edge emission peak was blue-shifted compared to that of the bulk ZnSe due to the quantum confinement effects; the peak also displayed a progressive red-shift with increasing the excitation power and an associated reduction in peak energy of up to 300 meV. Band gap renormalization in the electron–hole plasma regime might be used to explain this phenomenon. No previous published research regarding the observed excitation-power-dependent PL properties of the wurtzite ZnSe QDs had been found. Our experimental results contributed valuable insights into the optical properties of the wurtzite ZnSe QDs; with potential applications in optoelectronics and other areas where advanced uniformly-structured nanocrystalline semiconductor materials were finding increased use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号