首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scandium oxide (Sc2O3) films were deposited by electron beam evaporation with substrate temperatures varying from 50 to 350 °C. X-ray diffraction, scanning electron microscopy, spectrometer, and optical profilograph were employed to investigate the structural and optical properties of the films. The refractive index and extinction coefficient were calculated from the transmittance and reflectance spectra, and then the energy band gaps were deduced and discussed. Laser induced damage threshold of the films were also characterized. Optical and structural properties of Sc2O3 films were found to be sensitive to substrate temperature.  相似文献   

2.
In2O3 thin films were prepared by the thermal oxidation of amorphous InSe films in air atmosphere. The structure, morphology and composition of the thermal annealed products were characterized by X-ray diffraction (XRD), scanning electron microscopy and energy-dispersive spectroscopy, respectively. The XRD patterns indicate that the as-deposited InSe films were amorphous and they fully transformed into polycrystalline In2O3 films with a cubic crystal structure in the preferential (222) orientation at a temperature around 600 °C. The optical energy gap of 3.66 eV was determined at room temperature by transmittance and reflectance measurements using UV-vis-NIR spectroscopy. A preliminary characterization shows that these films have a promising response towards NO2 gas at a working temperature around 180 °C.  相似文献   

3.
Indium tin oxide (ITO) thin films were deposited on quartz substrates by direct current magnetron sputtering and annealed in N2 and air. The normal incidence transmittance of the films was measured by a spectrophotometer. The electrical parameters such as carrier concentration, mobility and resistivity were investigated by van der Pauw method. An optical model has been proposed to simulate the optical constants and thicknesses of the films from transmittance data, which combines the Forouhi-Bloomer model and modified Drude model. The relaxation energy in the Drude term is taken as energy-dependent for a better fitting in the visible spectral range. The simulated transmittance is in good agreement with the measured spectrum in the whole measurement wavelength range. The electrical parameters obtained from the optical simulation are well consistent with those measured electrically by van der Pauw method. The experimental results also indicate that the different post-deposition annealing treatments yield the distinct optical and electrical properties of ITO films.  相似文献   

4.
Considering practical applications in electronic devices, we studied the growth of In2O3 thin films on amorphous glasses by magnetron sputtering at room temperature and annealing effect on the structural and electrical properties. The vacuum annealed In2O3 thin films display a grain size enlargement and preferential orientation. Electrical characterization shows that the vacuum annealed In2O3 thin films exhibit a significant enhancement of both electron density and mobility, while air ambient annealing leads to a remarkable drop. The mechanism of the electrical characteristic changes in In2O3 thin films by annealing is explored by using different scattering mechanisms. Finally, a thin film transistor device using vacuum annealed In2O3 nano-meter thin films as active channel material is demonstrated.  相似文献   

5.
For the first time, In2S3 films composed of nano-/microflakes were fabricated on fluorine-doped tin oxide (FTO) substrate using a simple and effective hydrothermal method. The structure, composition and morphology were examined by X-ray diffraction, energy-dispersive X-ray spectroscopy and field emission scanning electron microscopy. It was found that the reaction time, reaction temperature and the molar ratio of the reactants play key roles in controlling the final morphologies. The possible growth mechanism for the formation of In2S3 thin films was proposed. And the optical and photoelectrochemical properties were also investigated. In addition, In2O3 films were obtained by annealing the In2S3 precursor films in air at 500 °C.  相似文献   

6.
Thin films of indium oxide have been deposited using the atomic layer deposition (ALD) technique using In(acac)3 (acac = acetylacetonate, pentane-2,4-dione) and either H2O or O3 as precursors. Successful growth using In(acac)3 is contradictory to what has been reported previously in the literature [J.W. Elam, A.B.F. Martinson, M.J. Pellin, J.T. Hupp, Chem. Mater. 18 (2006) 3571.]. Investigation of the dependence of temperature on the deposition shows windows where the growth rates are relatively unaffected by temperature in the ranges 165–200 °C for In(acac)3 and H2O, 165–225 °C for In(acac)3 and O3. The growth rates obtained are of the order 20 pm/cycle for In(acac)3 and H2O, 12 pm/cycle for In(acac)3.  相似文献   

7.
This study examined the characteristics of Ga:In2O3 (IGO) co-sputtered Zn:In2O3 (IZO) films prepared by dual target direct current (DC) magnetron sputtering at room temperature in a pure Ar atmosphere for transparent electrodes in IGZO-based TFTs. Electrical, optical, structural and surface properties of Ga and Zn co-doped In2O3 (IGZO) electrodes were investigated as a function of IGO and IZO target DC power during the co-sputtering process. Unlike semiconducting InGaZnO4 films, which were widely used as a channel layer in the oxide TFTs, the co-sputtered IGZO films showed a high transmittance (91.84%) and low resistivity (4.1 × 10− 4 Ω cm) at optimized DC power of the IGO and IZO targets, due to low atomic percent of Ga and Zn elements. Furthermore, the IGO co-sputtered IZO films showed a very smooth and featureless surface and an amorphous structure regardless of the IGO and IZO DC power due to the room temperature sputtering process. This indicates that co-sputtered IGZO films are a promising S/D electrode in the IGZO-based TFTs due to their low resistivity, high transmittance and same elements with channel InGaZnO4 layer.  相似文献   

8.
X.K. Duan  Y.Z. Jiang 《Thin solid films》2011,519(10):3007-3010
(Bi1 − xSnx)2Te2.7Se0.3 thermoelectric thin films with thickness of 800 nm have been deposited on glass substrates by flash evaporation method at 473 K. The structures, morphology of the thin films were analyzed by X-ray diffraction and field emission scanning electron microscopy respectively. Effects of Sn-doping concentration on thermoelectric properties of the annealed thin films were investigated by room-temperature measurement of Seebeck coefficient and electrical resistivity. The thermoelectric power factor was enhanced to 12.8 μW/cmK2 (x = 0.003). From x = 0.004 to 0.01 Sn doping concentration, the Seebeck coefficients are positive and show p-type conduction. The Seebeck coefficient and electrical resistivity gradually decrease with increasing Sn doping concentration.  相似文献   

9.
Zirconium doped indium oxide thin films were deposited by the atomic layer deposition technique at 500 °C using InCl3, ZrCl4 and water as precursors. The films were characterised by X-ray diffraction, energy dispersive X-ray analysis and by optical and electrical measurements. The films had polycrystalline In2O3 structure. High transparency and resistivity of 3.7×10−4 Ω cm were obtained.  相似文献   

10.
Polycrystalline Bi thin films with thickness in the range 40-160 nm have been successfully deposited on glass substrates at 453 K by flash evaporation method for the first time. XRD and FE-SEM were performed to characterize their structure and surface morphology respectively. Electrical resistivity measurement was carried out in the temperature range 300-350 K. Hall coefficient, electron concentration and mobility were measured at 300 K. A distinctly oscillatory behavior has been observed for the electrical properties of the Bi thin films.  相似文献   

11.
An amorphous transparent conductive oxide thin film of molybdenum-doped indium oxide (IMO) was prepared by reactive direct current magnetron sputtering at room temperature. The films formed on glass microscope slides show good electrical and optical properties: the low resistivity of 5.9 × 10− 4 Ω cm, the carrier concentration of 5.2 × 1020 cm− 3, the carrier mobility of 20.2 cm2 V− 1 s− 1, and an average visible transmittance of about 90.1%. The investigation reveals that oxygen content influences greatly the carrier concentration and then the photoelectrical properties of the films. Atomic force microscope evaluation shows that the IMO film with uniform particle size and smooth surface in terms of root mean square of 0.8 nm was obtained.  相似文献   

12.
Optical properties of In2O3 films prepared by spray pyrolysis   总被引:1,自引:0,他引:1  
In2O3 thin films have been deposited on glass substrates by spray pyrolysis. InCl4 was used as the solute to prepare the starting solution with a concentration of 0.1 M. The films were grown at different substrate temperatures ranging from 300 to 400 °C. The as-grown layers were optically characterized in order to evaluate the absorption coefficient, optical band gap, refractive index, extinction coefficient and other optical parameters. The influence of substrate temperature on these parameters was reported and discussed.  相似文献   

13.
In2O3 thin films have been prepared from commercially available pure In2O3 powders by high vacuum thermal evaporation (HVTE) and from indium iso-propoxide solutions by sol-gel techniques (SG). The films have been deposited on sapphire substrates provided with platinum interdigital sputtered electrodes. The as-deposited HVTE and SG films have been annealed at 500°C for 24 and 1 h, respectively. The film morphology, crystalline phase and chemical composition have been characterised by SEM, glancing angle XRD and XPS techniques. After annealing at 500°C the films’ microstructure turns from amorphous to crystalline with the development of highly crystalline cubic In2O3−x (JCPDS card 6-0416). XPS characterisation has revealed the formation of stoichiometric In2O3 (HVTE) and nearly stoichiometric In2O3−x (SG) after annealing. SEM characterisation has highlighted substantial morphological differences between the SG (highly porous microstructure) and HVTE (denser) films. All the films show the highest sensitivity to NO2 gas (0.7–7 ppm concentration range), at 250°C working temperature. At this temperature and 0.7 ppm NO2 the calculated sensitivities (S=Rg/Ra) yield S=10 and S=7 for SG and HVTE, respectively. No cross sensitivity have been found by exposing the In2O3 films to CO and CH4. Negligible H2O cross has resulted in the 40–80% relative humidity range, as well as to 1 ppm Cl2 and 10 ppm NO. Only 1000 ppm C2H5OH has resulted to have a significant cross to the NO2 response.  相似文献   

14.
Alumina (Al2O3) thin films were sputter deposited over well-cleaned glass and Si < 100 > substrates by DC reactive magnetron sputtering under various oxygen gas pressures and sputtering powers. The composition of the films was analyzed by X-ray photoelectron spectroscopy and an optimal O/Al atomic ratio of 1.59 was obtained at a reactive gas pressure of 0.03 Pa and sputtering power of 70 W. X-ray diffraction results revealed that the films were amorphous until 550 °C. The surface morphology of the films was studied using scanning electron microscopy and the as-deposited films were found to be smooth. The topography of the as-deposited and annealed films was analyzed by atomic force microscopy and a progressive increase in the rms roughness of the films from 3.2 nm to 4.53 nm was also observed with increase in the annealing temperature. Al-Al2O3-Al thin film capacitors were then fabricated on glass substrates to study the effect of temperature and frequency on the dielectric property of the films. Temperature coefficient of capacitance, AC conductivity and activation energy were determined and the results are discussed.  相似文献   

15.
Photoacoustic spectroscopy (PAS) has proved to be an effective technique for the evaluation of inherent defect population in a wide range of materials for various applications. This paper demonstrates the use of this technique in transmission mode and hence evaluates the optical properties of flash evaporated CuIn0.75Ga0.25Se2 (CIGS) thin films. Both the photoacoustic and transmission spectra were recorded at room temperature using high resolution near-infrared of the gas-microphone type PAS which revealed a very broad transmission region (about 300 meV) near the fundamental band edge in the as-grown CIGS thin films due to the presence of several shallow defect levels. The post-deposition heat treatment of the samples under selenium ambient followed by annealing under inert and forming gas ambient showed significant changes in the behavior of the PAS spectra particularly near the fundamental band edge. The absorption coefficient has been derived from these spectra to determine the band gap energy values and the activation energies for several defect related energy levels. Using the PAS, the energy band gap values were in the range of 1.197 to 1.202 eV. The optical transmission spectra were also recorded from the spectrophotometer. The transmission data was used to determine the energy band gap values which were calculated to be in the range of 1.159 to 1.194 eV. These values were found to be in good agreement to each other as well as to those reported in the literature.  相似文献   

16.
Indium Tin Oxide (ITO) thin films have been deposited by the Sol-Gel Dip-Coating technique, the starting solutions being prepared from chlorides. These multilayered films were crystallized by means of a classical heat treatment at temperatures ranging from 500 to 600 °C. Five stacked layers are necessary to obtain a global electrical resistivity value of 2.9×10−3 Ω cm, for 500 °C annealed film. The paper focuses on the study of the structure of such multilayered deposits, and on the densification process, using transmission electron microscopy, Rutherford Back-scattering Spectrometry and electrical resistivity measurements. This analysis reveals structural inhomogeneities and different crystallite growth processes as a function of annealing temperature and number of deposited layers.  相似文献   

17.
This paper reports the influence of In2O3 film structure on gas-sensing characteristics measured in steady state and transient modes. Films were deposited by spray pyrolysis from InCl3–water solutions. Correlation between gas-sensing parameters and structural parameters such as film thickness (20–400 nm), grain size (10–70 nm), refractive index and film texture (I(400)/I(222)) were established. It was shown that grain size and porosity are the parameters of In2O3 films that best control gas response to ozone. In the detection of reducing gases, the influence of film structure is less important. Decreases in film thickness, grain size and degree of texture are the best way to decrease time constants of the gas response of In2O3-based gas sensors.  相似文献   

18.
The nanocrystalline powders of pure and La3+-doped In2O3 with cubic structure were prepared by a simple hydrothermal decomposition route. The structure and crystal phase of the powders were characterized by X-ray diffraction (XRD) and microstructure by transmission electron microscopy (TEM). All the compositions exhibited a single phase, suggesting a formation of solid solution in the concentration of doping investigated. Gas-sensing properties of the sensor elements were tested by mixing a gas in air at static state, as a function of concentration of dopant, operating temperature and concentrations of the test gases. The pure In2O3 exhibited high response towards H2S gas at an operating temperature 150 °C. Doping of In2O3 with La3+ increases its response towards H2S and La3+ (5.0 wt.% La2O3)-doped In2O3 showed the maximum response at 125 °C. The selectivity of the sensor elements for H2S against different reducing gases was studied. The results on response and recovery time were also discussed.  相似文献   

19.
Microstructural characterization of pulsed laser deposited Al2O3/ZrO2 multilayers on Si (1 0 0) substrates at an optimized oxygen partial pressure of 3 × 10−2 mbar and at room temperature (298 K) has been carried out. A nanolaminate structure consisting of alternate layers of ZrO2 and Al2O3 with 40 bi-layers was fabricated at different zirconia layer thicknesses (20, 15 and 10 nm). The objective of the work is to study the effect of ZrO2 layer thickness on the stabilization of tetragonal ZrO2 phase for a constant Al2O3 layer thickness of 5 nm. The Al2O3/ZrO2 multilayer films were characterized using high temperature X-ray diffraction (HTXRD) in the temperature range 298–1473 K. The studies showed that the thickness of the zirconia layer has a profound influence on the crystallization temperature for the formation of tetragonal zirconia phase. The tetragonal phase content increased with the decrease of ZrO2 layer thickness. The cross-sectional transmission electron microscope (XTEM) investigations were carried out on a multilayer thin films deposited at room temperature. The XTEM studies showed the formation of uniform thickness layers with higher fraction of monoclinic and small fraction of tetragonal phases of zirconia and amorphous alumina.  相似文献   

20.
The electronic structural analysis of the conductive transparent films was carried out using bulk sensitive hard X-ray photoelectron spectroscopy (HAXPES). The In2O3-ZnO film has amorphous structure before and after annealed, and the conduction band spectrum around Fermi level showed the similar spectra with that of as-deposited amorphous In2O3 film. In these amorphous films, the conduction band minimum locates at the deeper level than the crystalline In2O3 film. The electronic state which comes from randomness of amorphous structure possibly exists around this level or below. These electrons are expected to act as scattering center. We concluded that the electron mobility depends on the density of this electronic state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号