首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Hyoun Woo Kim 《Thin solid films》2008,516(11):3665-3668
We synthesized β-Bi2O3 nanobelts on silicon substrates without using a metal catalyst. Trimethylbismuth and O2 were taken as the source of bismuth and oxygen, respectively. X-ray diffraction and transmission electron microscopy studies confirmed the formation of tetragonal Bi2O3 phase. The typical width of the β-Bi2O3 nanobelts was in the range of 40-400 nm. We suggested that the growth of β-Bi2O3 nanobelts was mainly controlled by a vapor-solid mechanism. Photoluminescence measurements at room temperature exhibited a visible light emission band peaking at around 2.81 eV.  相似文献   

2.
Amorphous β-Bi2O3 nanoparticles were synthesized directly via a liquid phase microwave reaction, and changed gradually into well crystallized sheet-like nanoparticles of β-Bi2O3 or α-Bi2O3 during the following calcining at lower (300 °C) or higher (350 °C) temperature. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and diffuse reflectance spectroscopy (DRS) were used to characterize the samples. The photocatalytic activity of the samples under simulated sunlight was also investigated by taking the degradation of rhodamine B (RB) as model reaction. β-Bi2O3 showed lower band gap energy and high absorbance in wider visible light region than α-Bi2O3 did, resulting in its higher photocatalytic activity. It was also found that higher crystallinity can improve the activity.  相似文献   

3.
Bismuth molybdate films with various phase structures including α-Bi2Mo3O12, β-Bi2Mo2O9, γ-Bi2MoO6, and γ′-Bi2MoO6 are fabricated on the indium-tin oxide glass substrates from an amorphous heteronuclear complex via the dip-coating method by appropriate adjustment of the reaction conditions. α-Bi2Mo3O12, β-Bi2Mo2O9, and γ-Bi2MoO6 film can be obtained at 400 °C, 500 °C, and 500 °C for 1 h, respectively. At 500 °C, γ′-Bi2MoO6 can be obtained for 4 h. Film formation process is proposed based on the experimental results. Thin γ-Bi2MoO6 films exhibit high photoresponse under visible light irradiation. Incident photon to current conversion efficiency of thin γ-Bi2MoO6 film starts to increase near 450 nm. And, it can reach 4.1% at 400 nm. The top of the valence band and bottom of the conduction band are roughly estimated to be − 0.71 and 1.69 eV, respectively. In contrast, γ′-Bi2MoO6 generated weak photocurrent; α-Bi2Mo3O12 and β-Bi2Mo2O9 film has no photoresponse under visible light irradiation. The reason for the difference in the visible light response was discussed.  相似文献   

4.
The effect of temperature on the crystallization of α-Fe2O3 particles from dense β-FeOOH suspensions was monitored by 57Fe Mössbauer spectroscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and energy dispersive spectroscopy. Dense suspensions of very long laterally arranged β-FeOOH fibrils were obtained at 90 °C. Crystallization at 120 °C between 18 and 72 h yielded monodisperse α-Fe2O3 particles of a shape close to that of double spheres with ring. The double spheres with ring showed two narrow particle size distributions. In these particles a substructure was detected, i.e., the spheres consisted of the linear chains of interconnected α-Fe2O3 subparticles. With further rise in the crystallization temperature the increase in α-Fe2O3 particles and porosity became pronounced. Obviously, the aggregation mechanism played an important role in the formation of α-Fe2O3 particles.  相似文献   

5.
β-BiTaO4 powder was synthesized by the citrate method, using bismuth citrate and TaCl5 as precursors. The citrate gel was characterized by thermal analyses (TG and DTA), in order to determine the best polymerization temperature. The polymeric precursor is essentially amorphous and after calcination at 400 °C a mixture of tantalates, that are isomorphic to Bi3NbO7 and Bi5Nb3O15, starts to crystallize. At 600 °C, in addition to those phases, one could observe some peaks related to β-BiTaO4. Finally, at 800 °C β-BiTaO4 can be observed as a pure phase, with particle size estimated as 47 nm. The precursor polymeric method allowed obtaining β-BiTaO4 pure phase at temperatures significantly lower than those found for solid state reaction method.  相似文献   

6.
Nanometric Bi2O3 powder was successfully synthesized by applying the method based on self-propagating room temperature reaction (SPRT) between bismuth nitrates and sodium hydroxide. X-ray powder diffraction (XRPD) and Rietveld's structure refinement method were applied to characterize prepared powder. It revealed that synthesized material is a single phase monoclinic α-Bi2O3 (space group P21/c with cell parameters a = 5.84605(4)Å, b = 8.16339(6) Å, c = 7.50788(6) Å and β = 112.9883(8)). Powder particles were of nanometric size (about 50 nm). Raman spectral studies conformed that the obtained powder is single phase α-Bi2O3. Specific surface area of obtained powder was measured by Brunauer-Emmet-Teller (BET) method.  相似文献   

7.
New quenched-in fluorite-type materials with composition (BiO1.5)0.94−x(LaO1.5)0.06(PbO)x, x = 0.02, 0.03, 0.04 and 0.05, were synthesised by solid state reaction. The new materials undergo a number of phase transformations during heating between room temperature and 750 °C, as indicated by differential thermal analysis. Variable temperature X-ray diffraction performed on the material (BiO1.5)0.92(LaO1.5)0.06(PbO)0.02 revealed that the quenched-in fcc fluorite-type material first undergoes a transformation to a β-Bi2O3-type tetragonal phase around 400 °C. In the range 450-700 °C, α-Bi2O3-type monoclinic, Bi12PbO19-type bcc and β12-type rhombohedral phases, and what appeared to be a ?-type monoclinic phase, were observed, before a single-phase fluorite-type material was regained at 750 °C.  相似文献   

8.
Elliptical-type α-Fe2O3 nanoparticles with/without silica shell have been prepared. The core particles were coated with uniform continuous layers of silica of two different thicknesses by hydrolysis of TEOS. The obtained HCP structure elliptical α-Fe2O3 nanoparticles with ∼ 240 nm length and 100 nm width is polycrystalline in nature. The thicknesses of SiO2 shell coated on α-Fe2O3 are about 55 and 30 nm, respectively. The optical and magnetic properties of these nanoparticles have been investigated.  相似文献   

9.
High-Tc screen-printed Ho-Ba-Cu-O films were prepared on YSZ substrates by a melt processing method. The films were fired at Ts = 1000-1050 °C for 5 min and cooled to 450 °C by two steps in flowing O2. The maximum critical current density Jc (77 K, 0 T) of 2.0 × 103 A cm− 2 was only attained under much limited firing conditions; Ts = 1020 °C and cooled to 800 °C at a cooling rate of 400 °C h− 1.  相似文献   

10.
We have investigated Bi2O3-Eu2O3 binary system by doping with Eu2O3 in the composition range from 1 to 10 mole% via solid state reactions and succeeded to stabilize β-Bi2O3 phase which is metastable when pure. Stability of β-Bi2O3 polymorph was influenced by heat treatment temperature. Tetragonal type solid solution was obtained in 3–6 mole% addition range when annealed at 750°C and the range was 2–7 mole% when annealed at 800°C. We have also carried out investigations on lattice parameters, microstructural properties and elemental compositions of this β type solid solution for each doping ratio. Lattice parameters increased with amount of Eu2O3 addition. Our experimental observations strongly suggested that oxygen deficiency type non-stoichiometry is present in doped β type solid solutions.  相似文献   

11.
High-temperature fluorite structure Bi2O3 is a well-known solid electrolyte owing to its high oxygen ion conductivity. In this study, Bi2O3 thin film was prepared by the oxidation process of the electrodeposited metallic Bi film. The crystal structures of the oxidized Bi films varied with the applied voltages during the electroplating process. Pure α-Bi2O3 was obtained when the oxidation was conducted for the metallic Bi film electrodeposited at −0.1 V. Only β-Bi2O3 was observed as a −0.5 V electrodeposited Bi film was oxidized. The crystal structure of Bi2O3 obtained by oxidation of metallic Bi film may dominantly be affected by the orientation of as-electrodeposited Bi film. Such kind of process is favorable to the preparation of functional ceramic with specific crystal structure.  相似文献   

12.
Dan Liu  Yongping PuXuan Shi 《Vacuum》2012,86(10):1568-1571
A microwave ceramic with general composition (1-x-y) BaTiO3 + x Cr2Ti3O9 + y Bi2O3 has been prepared by solid state synthesis at 1300-1400 °C. The phase composition, perovskite structural parameters and dielectric properties have been obtained by X-ray diffraction and dielectric measurements as a function of chemical composition and temperature. At low doping levels the formation of BaTiO3-based solid solution has been found. The precipitation of BaCrO3 has been detected at x = y = 2.0 mol%. A model of the incorporation of Cr3+ and Bi3+ ions into BaTiO3-based crystal lattice has been proposed. Diffused phase transition in the temperature range 100-140 °C have been revealed by dielectric measurements for different ceramic composition. As high dielectric constant as 7311 and as low dielectric loss as 0.02 have been found for the composition of 0.98BaTiO3-0.01Cr2Ti3O9-0.01Bi2O3.  相似文献   

13.
Bismuth titanate (Bi4Ti3O12) platelets were obtained by the molten salt synthesis method in NaCl-KCl and Na2SO4-K2SO4 fluxes, using an amorphous Bi4Ti3O12 precursor and a mechanically mixed Bi2O3-TiO2 mixture as the starting materials. It was found that the synthesizing temperature, salt species and starting materials could significantly affect the crystallization habit and morphology of Bi4Ti3O12 platelets. Under the same processing conditions (i.e. in Na2SO4-K2SO4 flux at 1000 °C), the Bi4Ti3O12 platelets synthesized from the Bi2O3-TiO2 mixture generally showed a smaller particle size than those synthesized using the amorphous Bi4Ti3O12 precursor. The Bi4Ti3O12 platelets prepared in the chloride flux were faceted along either (0 0 1) or (1 1 2) planes, while those prepared in the sulfate flux were solely (0 0 1) faceted. The former system also had smaller particle size than the latter. Furthermore, the salt content and the addition of plate-like Bi4Ti3O12 seeds in the amorphous Bi4Ti3O12 precursor showed a strong influence on the particle size of the synthesized Bi4Ti3O12 platelets. The particle size of Bi4Ti3O12 platelets prepared in the sulfate flux decreased as the mole ratio of the sulfate salts to Bi4Ti3O12 was increased from 7.9 to 23.7. And the addition of 10 wt.% plate-like Bi4Ti3O12 seeds into the amorphous Bi4Ti3O12 precursor led to a significant increase in the particle size of the resulting Bi4Ti3O12 platelets.  相似文献   

14.
β-FeOOH nanowire arrays were assembled into porous anodized aluminum oxide (AAO) templates by electrochemical deposition in the mixture solution of FeCl3 and (NH4)2C2O4. In order to obtain well-crystallized α-Fe2O3 and other iron oxides nanowires, β-FeOOH nanowire arrays with amorphous crystal structure were heat-treated at different temperatures from 200 to 600 °C. The decomposition products were characterized by DTA, XRD, FTIR, and Mössbauer spectroscopy. When heat-treated at 200 °C, only 65% of β-FeOOH decomposed, whereas, when the temperature was up to 300 °C, it was completely decomposed and formed poorly crystallized β-Fe2O3. This transition temperature is higher than the 200 °C obtained on other β-FeOOH materials. However, when heated above 300 °C, the main products are characterized as poorly crystallized α-Fe2O3 nanowires, whereas, well-crystallized α-Fe2O3 nanowire arrays can be formed when the temperature was up to 600 °C, and this temperature is also higher compared with those temperatures observed on other β-FeOOH materials. From Mössbauer results, the α-Fe2O3 nanowires were composed of fine particles in which 66% of the particles are superparamagnetic.  相似文献   

15.
Bi2O4−x, a Bi mixed-valence phase was prepared at 95 °C, by a precipitation process, in a basic medium with a highly oxidizing K2S2O8/Na2S2O8. This phase has a low thermal stability as it decomposes below 400 °C in a multiple step process by some O2 losses prior to finally transforming into γ-Bi2O3. The as-prepared powders are 50-60 nm in size with a narrow size distribution. Optical spectra of Bi2O4−x exhibit a broad absorption band with a band gap of ∼1.4 eV as compared to 2.61 eV for Bi2O3. The composition of this non-stoichiometric phase, which crystallizes in cubic fluorite related structure with a cell parameter of 5.538(3) Å, is Bi2O3.65 ± 0.10.  相似文献   

16.
The fabrication of GaN on the surface of a bulk β-Ga2O3 single crystal by nitridation with NH3 was investigated for the purpose of using it as a substrate for GaN epitaxial growth. A β-Ga2O3 single crystal was prepared using a floating zone furnace with double ellipsoidal mirrors, and its polished (100) plane was nitridated in NH3 atmosphere at 850 °C for 5 h. It was found that hexagonal GaN with preferred in-plane orientation was produced on the surface of β-Ga2O3, and the thickness of nitride layers was approximately 50 nm. High resolution transmission electron microscopic observation indicated that the synthesized GaN was composed of the aggregation with single crystalline GaN particles, whose size ranged from ∼ 5 nm to ∼ 50 nm, and dislocation or defect was not observed in a GaN particle. This method could be expected as a new route to fabricate a substrate for epitaxial growth of III-nitride materials instead of using a bulk GaN single crystal.  相似文献   

17.
Bi2Fe4O9 have been successfully prepared using ethylenediaminetetraacetic (EDTA) acid as a chelating agent and ethylene glycol as an esterification agent. Heating of a mixed solution of EDTA, ethylene glycol, and nitrates of iron and bismuth at 140 °C produced a transparent polymeric resin without any precipitation, which after pyrolysis at 250 °C was converted to a powder precursor for Bi2Fe4O9. The precursors were heated at 400–800 °C in air to obtain Bi2Fe4O9 powder and differential scanning calorimetry (DSC), thermogravimetric (TG), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) techniques were used to characterize the precursors and the derived oxide powders. XRD analysis showed that well-crystallized and single-phase Bi2Fe4O9 with orthorhombic symmetry was obtained at 700 °C for 2 h and BiFeO3 and Fe2O3/FeCO3 were intermediate phases before the formation of Bi2Fe4O9. Bi2Fe4O9 powders show weak ferromagnetism at room temperature.  相似文献   

18.
The X-ray photoelectron spectroscopy (XPS) measurements have been used to reveal the compositions of alumina (Al2O3) films formed on Si wafers using tri-methyl aluminium (TMA) and molecular oxygen (O2) with catalytic chemical vapour deposition (Cat-CVD). The atomic ratio (O/Al) for Al2O3 samples formed at substrate temperature of 200-400 °C has been obtained to be 1.4 which is close to stoichiometry. The increase of growth rate at substrate temperatures below 200 °C and above 400 °C can be attributed to formation of aluminum oxides with non-stoichiometry and metallic aluminum incorporated in the films resulting from deficient oxygen. Angle resolved XPS measurements have revealed that the alumina/Si interface with no SiO2 film has been obtained at substrate temperatures below 200 °C.  相似文献   

19.
Hollow α-Fe2O3 irregular microspheres were prepared at 160 °C from a hydrolyzing Fe(ClO4)3 solution by adding sodium polyanethol sulphonate. The particles were characterized by 57Fe Mössbauer, X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy. The walls of these hollow particles consisted of elongated subunits composed of elongated and thin α-Fe2O3 rods. The precipitation of hollow α-Fe2O3 irregular microspheres was governed by the preferential adsorption of sulphonate/sulphate groups. The lateral aggregation of elongated thin rods and subunits also played an important role in the formation of hollow α-Fe2O3 irregular microspheres.  相似文献   

20.
Preparation and characterization of porous ultrafine Fe2O3 particles   总被引:1,自引:0,他引:1  
Porous ultrafine Fe2O3 particles were prepared by homogeneous precipitation method. Fe3+ and urea were chosen as starting materials and anionic surfactant as the template. It is shown that the reaction results in the precipitation of a gelatinous hydrous iron oxide/surfactant mixture, which gives ultrafine Fe2O3 particles after drying and calcinations. The products were characterized by XRD, TEM, TG/DTA and BET. Conventional XRD patterns show that the products are mixture of γ-Fe2O3 and α-Fe2O3 phase after being sintered at 350 °C, and γ-Fe2O3 transforms entirely to α-Fe2O3 when sintered at 650 °C. The low-angle XRD patterns indicate that the mesostructure can only exist between 350 and 400 °C. TEM results show that the Fe2O3 particles have diameters of about 30 nm and lengths ranging from 100 to 120 nm; in each particle, there are several vermiculate-like mesopores with diameter of about 20-25 nm. The BET surface areas in excess of 50 m2/g are obtained after calcinations at 350 °C. The BJH desorption average pore width is around 22 nm, which is in agreement with the TEM results. The results show that anionic surfactant and sintering temperature are important to obtain this special morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号