首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yang Wei 《Materials Letters》2007,61(6):1337-1340
Well-crystallized LaF3:Yb,Er nanoparticles were prepared by the polyol method and three kinds of polyols (glycol, diethylene glycol and glycerol) were chosen as the reaction medium respectively. All of the obtained LaF3:Yb,Er nanoparticles have roughly spherical shapes, and the average sizes of these nanoparticles ranged from 5 to 7 nm. These nanoparticles could be well dispersed in water or ethanol to form colloidal solutions. When these nanoparticles were excited by the 980 nm laser, several upconversion emissions were observed.  相似文献   

2.
α-Al2O3 nanowires, with diameter around 10 nm, were synthesized in bulk quantity by heating the mixture of pure aluminum and graphite powders at 900 °C. Scarcity of oxygen is regarded as the reason for the growth of the small diameter α-Al2O3 nanowires at relatively low temperature. The product was characterized by field emission scanning electron microscopy, high-resolution transmission electron microscopy and photoluminescence. The Oxygen vacancies in the nanowires lead to the strong photoluminescence in the wavelength range of 400-700 nm with its peak at 527 nm.  相似文献   

3.
The synthesis, characterization, and fluorescent spectra of rare-earth doped NaYF4 upconversion nanocrystals are introduced in this paper. The nanocrystals were synthesized in the water-ethanol-oleic acid system via a two-phase solvothermal approach, by using rare-earth stearate as the precursor. The as-prepared nanocrystals were of hexagonal phase, strong UC fluorescent intensity, with an average size of about 25 nm, which have been characterized by TEM, SAED, powder XRD, and luminescence spectroscopy. The possible mechanism of this synthesis that the nucleation and growth of nanocrystals occurred at the solid-liquid interface was also discussed. The nanocrystals are hydrophilic, and expected to fulfil the demand for biological applications via further modification.  相似文献   

4.
Er3+, Tm3+ and Yb3+ codoped gadolinium oxyfluoride nanoparticles were prepared in aqueous solution by a simple coprecipitation method, under alkaline conditions. After a suitable heat treatment at 500 °C, the nanocrystalline powders were found to be single phase tetragonal Gd4O3F6 after a structural characterization using X-ray powder diffraction. Transmission electron microscopy images showed that the average size of the nanoparticles was approximately 50 nm. Following appropriate lanthanide ion doping, the nanocrystals show bright white light upconversion upon excitation at 980 nm using a diode laser as the excitation source.  相似文献   

5.
Synthesis and upconversion luminescence properties of the new BaGd2(MoO4)4:Yb3+,Er3+ phosphor were reported in this paper. The phosphor powder was obtained by the traditional high temperature solid-state method, and its phase structure was characterized by the XRD pattern. Based on the upconversion luminescence properties studies, it is found that, under 980 nm semiconductor laser excitation, BaGd2(MoO4)4:Yb3+,Er3+ phosphor exhibits intense green upconversion luminescence, which is ascribed to 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transition of Er3+. While the observed much weaker red emission is due to the non-radiative relaxation process of 4S3/2 → 4F9/2 and 4F9/2 → 4I15/2 transition originating from the same Er3+. The concentration quenching effects for both Yb3+ and Er3+ were found, and the optimum doping concentrations of 0.5 mol% Yb3+ and 0.08 mol% Er3+ in the new BaGd2(MoO4)4 Gd3+ host were established.  相似文献   

6.
Yb and Er codoped LaF3 nanocrystals were synthesized and studied. The upconversion luminescence properties of nanocrystals capped with different ligands are mainly dependent on the ligands, especially for the red emission which is sensitive to the nonradiative relaxation. The chelation between the ligands and rare earth ions can affect the morphology and fluorescent properties of samples. The chelating ligands will reduce the nonradiative quenching by isolating the RE ions from surrounding environment. So the upconversion luminescence properties of the samples vary correspondingly.  相似文献   

7.
A novel blue-emitting Sr3Ga2O5Cl2:Eu2+ phosphor has been synthesized by a two-step solid-state reaction. The luminescence properties have been investigated by photoluminescence (PL) spectra, and temperature-dependent PL spectra. It shows an efficient broad absorption band around 400 nm, which matches well with the commercial near-ultraviolet light-emitting chips, and an efficient blue emission. It shows a higher thermal quenching temperature than that of Sr3Al2O5Cl2:Eu2+ phosphor. Sr3Ga2O5Cl2:Eu2+ phosphor is a promising blue-emitting component for UV chip excited white light-emitting-diodes.  相似文献   

8.
The luminescent properties of Na3Y1−xSi3O9:xEu3+ (0.05 ≦ x ≦ 0.80) powder crystals were investigated in UV-VUV region. The Eu3+-O2− charge transfer band (CTB) was observed to be located at around 233 nm and the environmental parameter (he) was estimated to be about 0.730. The excitation spectrum monitoring the 613 nm red emission from Eu3+ ions reveals the host absorption band (HAB) to be around 145 nm. The calculated Commission Internationale de l’Eclairage (CIE) chromaticity coordinates indicate the emission by 233 nm rather than by 147 nm excitation has the better color purity and the possible mechanisms have been proposed. The Eu3+-emission showed high quenching concentration due to the isolated YO6 octahedra in the host and the small he for the Eu3+ ions and the optimum concentration was determined to be as high as x = 0.65 and 0.30 with 233 and 147 nm excitation, respectively.  相似文献   

9.
ABO4 (A = Ca, Sr; B = W, Mo):Er3+/Yb3+/Li+ phosphors tri-doped with different concentrations of Li+ ion ranging from 0 to 22.5 mol% were prepared by using a solid-state reaction method. And their upconversion (UC) luminescence properties were in estimated under a 975 nm laser-diode excitation. The four kinds of phosphors (CaWO4, CaMoO4, SrWO4, and SrMoO4) tri-doped with Er3+, Yb3+ and Li+ ions showed strong green UC emission peaks at 530 nm and 550 nm and weak red UC emission. The intensity of green UC emission of Li+ doped samples was several higher than that of Li+ un-doped samples due to the reduction of lattice constant and the local crystal field distortion around rare-earth ions. The optimum doping concentration of Li+ ions was investigated and the effects of Li+ concentration for UC emission intensity were studied in detail.  相似文献   

10.
Both CaAl2O4 (CA2) and CaAl4O7 (CA4) oxide-systems possess monoclinic crystal structure. Herein, we have prepared CA2 and CA4 systems via single step combustion route. A good correlation is observed between calculated and the standard lattice parameters. Ce3+ ions were deliberately doped as extrinsic impurities in order to understand the crystal symmetry effects on the emission characteristics in the as-prepared matrices. Large red-shift was observed in CA4-emission spectrum despite of their same crystal structures. Possible reasons are discussed.  相似文献   

11.
The electric properties of (Sn, Ti)O2 doped with 1.00 mol% CoO, 0.05 mol% Nb2O5 and x mol% La2O3 (0.25≤x≤1.00) have been studied. Sn0.25Ti0.75Co0.01Nb0.005 doped with 0.50 mol% La2O3 has a nonlinearity coefficient of 6. An increase in the concentration of La2O3 raised its resistivity, thereby altering the electric properties of the material. A thermal treatment in oxygen atmosphere increased the nonlinearity coefficient to a value of 9.  相似文献   

12.
Wen-hui Li 《Materials Letters》2008,62(25):4149-4151
Single crystalline Co3O4 nanorods have been successfully synthesized through thermal decomposition of the precursor, which was obtained by the microwave-assisted hydrothermal route. The obtained sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectrometer (FT-IR), and X-ray photoelectron spectroscopy (XPS). The results confirm that the resulting oxide was pure single-crystalline Co3O4 nanorods. The optical property test indicates that the absorption peak of the nanorods shifts towards short wavelength. And the blue shift phenomenon might be ascribed to the quantum effect.  相似文献   

13.
Journal of Materials Science: Materials in Electronics - Avalanche phenomenon uses critical pump power to produce extreme nonlinear behavior from small disturbances, and has gradually become known....  相似文献   

14.
M. Lei 《Materials Letters》2009,63(22):1928-1930
Zinc gallate (ZnGa2O4) nanowires were directly grown on the amorphous carbon-coated silicon substrates using a facile chemical vapor deposition method without any metal catalysts. The growth mechanism can be attributed to a self-organization vapor-liquid-solid (VLS) process. The amorphous carbon layer plays an important role in the nucleation and growth process of the ZnGa2O4 nanowires. The photoluminescence (PL) of the nanowires shows a broad, strong green emission band centered at 532 nm and a weak UV emission band at 381 nm, which can be attributed to a large amount of ionized oxygen vacancies and the combination of Ga3+ ions with free electrons in coordinated oxygen vacancies, respectively.  相似文献   

15.
We developed a procedure to prepare luminescent LiYF4:Yb/LiYF4 and LiYF4:Yb,Er/LiYF4 core/shell nanocrystals with a size of approximately 40 nm revealing luminescence decay times of the dopant ions that approach those of high-quality laser crystals of LiYF4:Yb(Yb:YLF)and LiYF4:Yb,Er(Yb,Er:YLF)with identical doping concentrations.As the luminescence decay times of Yb3+and Er3+are known to be very sensitive to the presence of quenchers,the long decay times of the core/shell nanocrystals indicate a very low number of defects in the core particles and at the core/shell interfaces.This improvement in the performance was achieved by introducing two important modifications in the commonly used oleic acid based synthesis.First,the shell was prepared via a newly developed method characterized by a very low nucleation rate for particles of pure LiYF4 shell material.Second,anhydrous acetates were used as precursors and additional drying steps were applied to reduce the incorporation of OH?in the crystal lattice,known to quench the emission of Yb3+ions.Excitation power density(P)-dependent absolute measurements of the upconversion luminescence quantum yield(ΦUC)of LiYF4:Yb,Er/LiYF4 core/shell particles reveal a maximum value of 1.25%at P of 180 W·cm?2.Although lower than the values reported for NaYF4:18%Yb,2%Er core/shell nanocrystals with comparable sizes,theseΦUC values are the highest reported so far for LiYF4:18%Yb,2%Er/LiYF4 nanocrystals without additional dopants.Further improvements may nevertheless be possible by optimizing the dopant concentrations in the LiYF4 nanocrystals.  相似文献   

16.
Y2O3:Er3+,Yb3+ nanoparticles were synthesized using Pechini type sol-gel method and then characterized by XRD, TEM, SEM, Raman spectroscopy, and fluorescence spectrophotometer. Local temperature effect on upconversion luminescence intensities was theoretically analyzed and experimentally tested. These results indicate that a competition process between local temperature at luminescent spot and laser pump power density decides the development trend of upconversion luminescence intensity. Therefore, it can be concluded that the most intensive upconversion luminescence in Y2O3:Er3+,Yb3+ nanoparticles can be achieved at a certain pump power density, which should be slightly below a given constant value (the corresponding threshold of temperature).  相似文献   

17.
A series of Y3Al5O12:Ce3+, Er3+ (YAG:Ce, Er) nano-particles were synthesized by polymer-assisted sol–gel method. X-ray diffraction measurements reveal that a pure crystalline phase of YAG is achieved at temperature as low as 800 °C. The energy transfer from Ce3+ to Er3+ is studied based on photoluminescence spectroscopy and fluorescence decay patterns. It results that the emission intensity of Er3+ at near infrared (NIR) 1532 nm under indirect excitation of Ce3+ (460 nm) is 10 times stronger than that of direct excitation of Er3+ (275 or 380 nm). The energy transfer efficiency is estimated as 95.5% for YAG:Ce0.03Er0.09 sample. The very efficient energy transfer path and mechanism are also discussed.  相似文献   

18.
Sr2Mg(BO3)2:Ce3+,Li+ and Sr2Mg(BO3)2:Ce3+,Li+,Mn2+ phosphors have been synthesized by conventional solid state reaction technology at 900 °C for 12 h in reducing atmosphere. The phase purity, photoluminescence (PL) properties, thermal stability, energy transfer and luminescent decay curves have been investigated. Sr2Mg(BO3)2:Ce3+,Li+,Mn2+ phosphors show blue and deep-red1 emission bands. The deep-red emission band is attributed to the energy transfer from Ce3+ to Mn2+. The fluorescence lifetimes of Ce3+ in co-doped sample are shorter than that in single doped one, which confirms that the energy transfer takes place. The phosphors have weak thermal quenching. The luminescence properties of Sr2Mg(BO3)2:Ce3+,Li+,Mn2+ make the phosphor a new bicolor emitting material.  相似文献   

19.
Yb3+/Er3+ codoped Ca0.65La0.35F2.35 materials with intense red emission via upconversion were prepared by a high temperature solid-state method. Based on the upconversion luminescence properties investigations, it was found that, under 980 nm excitation, Ca0.65La0.35F2.35:20 mol.%Yb3+, xEr3+ showed intense red upconversion luminescence, which was ascribed to 4F9/2 → 4I15/2 transition of Er3+, although both green and red emissions could be detected. It was also found that the green and red emissions originated the two photon processes, and the ground-state absorption (GSA), excited-state absorption (ESA) and energy transfer (ET) processes between Er3+/Yb3+ ions and Er3+/Er3 ions were involved in the enhanced red emission mechanism.  相似文献   

20.
Two routes have been proposed for the synthesis of In2O3 powders from InCl3•4H2O and thiourea. One route involved a two-step procedure (that is, firstly, In2S3 clusters constructed with mainly nanoflakes were synthesized by heating the mixture of InCl3•4H2O and thiourea in air from room temperature to 200 °C, coupled with a subsequent washing treatment; secondly, In2O3 was obtained by calcining the In2S3 clusters in air at 600 °C for 6 h), and the other route was a one-step procedure (that is, In2O3 was synthesized directly by calcining the mixture of InCl3•4H2O and thiourea in air at 600 °C for 6 h). The resultant products were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, scanning electronic microscope and room temperature photoluminescence (RT-PL) spectra. It was observed that the In2O3 nanocrystals obtained via the two-step procedure exhibited PL peaks at about 453 and 471 nm, corresponding to the defeat-related emission; while the In2O3 submicron polyhedral crystals obtained via the one-step procedure and In2O3 pyramids obtained by calcining the only InCl3•4H2O in air at 600 °C for 6 h displayed a PL band centered at around 338 nm, corresponding to the band edge emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号