首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the development of ZnO-based varistors the electrical properties of ZnO/Bi2O3 junctions and of the two individual oxides are being investigated. Following our recent work on a.c. conductivity in Al---ZnO---Al sandwich structures we currently report d.c. measurements. The structures were prepared by r.f. magnetron sputtering in an argon/oxygen mixture in the ratio 4:1. Capacitance-voltage data confirm that the Al/ZnO interface does not form a Schottky barrier and measurements of the dependence of capacitance on film thickness indicate that the relative permittivity of the films is approximately 9.7. With increasing voltage the current density changed from an ohmic to a power-law dependence with exponent n≈3. Furthermore measurements of current density as a function of reciprocal temperature showed a linear dependence above about 240 K, with a very low activation energy below this temperature consistent with a hopping process. The higher temperature results may be explained assuming a room-temperature electron concentration n0 and space-charge-limited conductivity, dominated by traps exponentially distributed with energy E below the conduction band edge according to N = N0exp(−E/kTt), where k is Boltzmann's constant. Typical derived values of these parameters are: n0 = 7.2 × 1016 m−3, N0 = 1.31 × 1045 J−1 m−3 and Tt = 623 K. The total trap concentration and the electron mobility were estimated to be 1.13 × 1025 m−3 and (5.7−13.1) ×10−3m2V−1s−1 respectively.  相似文献   

2.
Vanadium pentoxide films were deposited onto glass substrates at different substrate temperatures (RT—400 °C) by d.c. reactive magnetron sputtering. The structural properties of the films were studied by X-ray diffraction, scanning electron microscopy and Raman spectra. The optical properties of the films were studied by measuring and fitting the transmittance. The film prepared at low temperature showed a high optical transmittance. The film prepared at the substrate temperature lower than 200 °C has an amorphous structure and the film prepared at substrate temperatures higher than 200 °C had a polycrystalline V2O5 structure. The optical parameters of the films were calculated by fitting the transmittance using the classical model.  相似文献   

3.
Transparent and conducting zirconium-doped zinc oxide films have been prepared by radio frequency magnetron sputtering at room temperature. The ZrO2 content in the target is varied from 0 to 10 wt.%. The films are polycrystalline with a hexagonal structure and a preferred orientation along the c axis. As the ZrO2 content increases, the crystallinity and conductivity of the film are initially improved and then both show deterioration. Zr atoms mainly substitute Zn atoms when the ZrO2 content are 3 and 5 wt.%, but tend to cluster into grain boundaries at higher contents. The lowest resistivity achieved is 2.07 × 10− 3 Ω cm with the ZrO2 content of 5 wt.% with a Hall mobility of 16 cm2 V− 1 s− 1 and a carrier concentration of 1.95 × 1020 cm− 3. All the films present a high transmittance of above 90% in the visible range. The optical band gap depends on the carrier concentration, and the value is larger at higher carrier concentration.  相似文献   

4.
Yanwei Huang 《Thin solid films》2010,518(8):1892-8340
Tungsten-doped tin oxide (SnO2:W) transparent conductive films were prepared on quartz substrates by pulsed plasma deposition method with a post-annealing. The structure, chemical states, electrical and optical properties of the films have been investigated with tungsten-doping content and annealing temperature. The lowest resistivity of 6.67 × 10− 4 Ω cm was obtained, with carrier mobility of 65 cm2 V− 1 s− 1 and carrier concentration of 1.44 × 1020 cm− 3 in 3 wt.% tungsten-doping films annealed at 800 °C in air. The average optical transmittance achieves 86% in the visible region, and approximately 85% in near-infrared region, with the optical band gap ranging from 4.05 eV to 4.22 eV.  相似文献   

5.
Fluorine-doped ZnO transparent conducting thin films were prepared by radio frequency magnetron sputtering at 150 °C on glass substrate. Thermal annealing in vacuum was used to improve the optical and electrical properties of the films. X-ray patterns indicated that (002) preferential growth was observed. The grain size of F-doped ZnO thin films calculated from the full-width at half-maximum of the (002) diffraction lines is in the range of 18-24 nm. The average transmittance in visible region is over 90% for all specimens. The specimen annealed at 400 °C has the lowest resistivity of 1.86 × 10− 3 Ω cm, the highest mobility of 8.9 cm2 V− 1 s− 1, the highest carrier concentration of 3.78 × 1020 cm− 3, and the highest energy band gap of 3.40 eV. The resistivity of F-doped ZnO thin films increases gradually to 4.58 × 10− 3 Ω cm after annealed at 400 °C for 4 h. The variation of the resistivity is slight.  相似文献   

6.
M. Dudek  O. Zabeida 《Thin solid films》2009,517(16):4576-4582
Research on tin doped indium oxide (ITO) has for many years been stimulated by the need to simultaneously optimize the electrical, optical and mechanical properties, and by new challenges related to the deposition of transparent conducting oxides on flexible plastic substrates. In the present work, we investigate the growth and optical, electrical, and mechanical (hardness, elastic modulus and stress) properties of ITO films deposited by plasma assisted reactive magnetron sputtering (PARMS) from an indium-tin alloy target. PARMS achieves an effective control of bombardment by reactive species (e.g., O2+, O+) on the surface of the growing film by varying the bias voltage, VB, induced by a radiofrequency power applied to the substrate. Stress-free films possessing high transparency (> 80% — film on glass) and low resistivity (4 × 10− 4 Ω cm) can be deposited by PARMS under conditions of intense ion bombardment (≤ 600 eV).  相似文献   

7.
Polycrystalline thin films of Ti-doped indium oxide (indium–titanium-oxide, ITiO) were prepared by d.c. magnetron sputtering and their electrical and optical properties were investigated. Doping of Ti was effective in improvement of the electroconductivity of the indium oxide: the electrical resistivity of 1.7 × 10−3 Ω cm of non-doping decreased to minimum value of 1.8 × 10−4 Ω cm at 2.4 at.% Ti-doping when the films were deposited at 300 °C. The polycrystalline ITiO films of 0.8–1.6 at. % Ti-doping showed the high Hall mobilitiy (82–90 cm2 V−1 s−1) and the relatively low carrier density (2.4–3.5 × 1020 cm−3) resulting in characteristics of both low resistivity (2.1–3.0 × 10−4 Ω cm) and high transmittance in the near-infrared region (over 80% at 1550 nm), which cannot be shown in the conventional Sn-doped indium oxide (ITO) films.  相似文献   

8.
Aluminum and indium co-doped zinc oxide (AIZO) thin films were prepared by direct current (dc) magnetron sputtering on glass substrate in pure argon atmosphere. Three inches of zinc oxide ceramic with 0.5 wt.% of aluminum and indium doping was used as a target in static mode. The influence of sputtering conditions i.e. substrate-target distance, pressure and power on AIZO films was studied. The electrical resistivity and microstructure of thin films were investigated by the four point probe technique and the scanning electron microscope, respectively. The optical transmittance of AIZO films was measured by UV visible spectrophotometer in the wavelength of 300-1100 nm. Depending on the deposited conditions, highly transparent films up to 80% with low resistivities in the range of 2.6-7.9 × 10− 4 Ω cm were achieved at room temperature. Possible mechanism in the processing which, ultimately, determines the physical properties of AIZO films will be discussed.  相似文献   

9.
退火对反应磁控溅射制备ITO薄膜性能影响   总被引:1,自引:0,他引:1  
采用铟锡合金靶 (铟 锡 ,90 - 10 ) ,通过直流反应磁控溅射在玻璃基片上制备出ITO薄膜 ,并在大气环境下高温退火处理。研究了退火温度对薄膜结构、光学和电学性能的影响。研究表明 ,随着退火温度升高薄膜的电学特性得到很大提高  相似文献   

10.
Indium tin oxide thin films were deposited onto polyethylene terephthalate substrates via thermionic enhanced DC magnetron sputtering at low substrate temperatures. The structural, optical and electrical properties of these films are methodically investigated. The results show that compared with traditional sputtering, the films deposited with thermionic emission exhibit higher crystallinity, and their optical and electrical properties are also improved. Indium tin oxide films deposited by utilizing thermionic emission exhibit an average visible transmittance of 80% and an electrical resistivity of 4.5 × 10−4 Ω cm, while films made without thermionic emission present an average visible transmittance of 74% and an electrical resistivity of 1.7 × 10−3 Ω cm.  相似文献   

11.
Nanocrystalline, highly (at.%) Co doped ZnO powder, obtained by a modified sol-gel method, was used as a target material for the growth of µm thin films by radio frequency magnetron sputtering. The films were deposited at room temperature on quartz substrates. The as-deposited films were polycrystalline but highly textured with the c-axis aligned normal to the substrate plane. They present high optical transmittance in the visible range of approximately 90%, a carrier concentration of about 1020 cm− 3 and electrical resistivity of 10− 3 Ω cm at room temperature. The analysis of the Co2+ spectrum by electron paramagnetic resonance (EPR) showed the Co to be incorporated substitutionally and the angular variation EPR spectrum demonstrates a monocrystal like texturing of the films with the c-axis normal to the film plane.  相似文献   

12.
Indium tin oxide (ITO) films were deposited by reactive High Target Utilisation Sputtering (HiTUS) onto glass and polyimide substrates. The ion plasma was generated by an RF power source while the target bias voltage was varied from 300 V to 500 V using a separate DC power supply. The deposition rate, at constant target power, increased with DC target voltage due to increased ion energy reaching 34 nm/min at 500 V. All the films were polycrystalline and showed strong (400) and (222) reflections with the relative strength of latter increasing with target bias voltage. The resistivity was lowest at 500 V with values of 1.8 × 10− 4 Ω cm and 2.4 × 10− 4 Ω cm on glass and polyimide, respectively but was still less than 5 × 10− 4 Ω cm at 400 V. All films were highly transparent to visible light, (> 80%) but the NIR transmittance decreased with increasing target voltage due to higher free carrier absorption. Therefore, ITO films can be deposited onto semiconductor layers such as in solar cells, with minimal ion damage while maintaining low resistivity.  相似文献   

13.
Tungsten- and titanium-doped indium oxide (IWO and ITiO) films were deposited at room temperature by radio frequency (RF) magnetron sputtering, and vacuum post-annealing was used to improve the electron mobility. With increasing deposition power, the as deposited films showed an increasingly crystalline nature. Compared with ITiO films, IWO films showed crystallinity at lower RF power. IWO films are partially crystallized at 10 W deposition power and become nearly fully crystalline at 20 W. ITiO films are fully crystalline only at 75 W. For this reason, film thickness has a greater impact on the electrical properties of IWO films than ITiO films. Vacuum post-annealing is more effective in improving electron mobility for amorphous than for (partially) crystalline IWO and ITiO films. Changes in the electrical properties of ITiO films can be better controlled as a function of annealing temperature than those of IWO films. Finally, post annealed 308 nm-thick IWO and 325 nm-thick ITiO films have approximately 80% transmittance in visible and near infrared wavelengths (up to 1100 nm), while their sheet resistances decrease to 9.3 and 10 Ω/□, and their electron mobilities are 51 cm2V− 1 s− 1 and 50 cm2V− 1 s− 1, respectively, making them suitable for use as Transparent Conductive Oxide layers of low bandgap solar cells.  相似文献   

14.
Transparent conducting cadmium oxide (CdO) films were deposited on PET (polyethylene terephthalate) substrate by DC reactive magnetron sputtering at room temperature. All the films deposited at room temperature were polycrystalline in rock-salt structure. Dependences of the physical properties of the CdO films on the oxygen partial pressure were systematically studied. The films deposited at low oxygen flow rate were (200) oriented, while the films deposited at an oxygen flow rate greater than 20 sccm were (111) oriented. The average grain size of the CdO films decreased as the oxygen flow rate increases as determined by XRD and SEM. The Hall effect measurement showed that CdO films have high concentration, low resistivity, and high mobility. Both the mobility and the concentration of the carrier decreased with the increase of the oxygen flow rate. A minimum sheet resistance of 36.1 Ω/□, or a lowest resistivity of 5.44 × 10− 4 Ω cm (6.21 × 1020/cm3, μ = 19.2 cm2/Vs) was obtained for films deposited at an oxygen flow rate of 10 sccm.  相似文献   

15.
This paper focuses on the preparation of boron doped ZnO (ZnO:B) films prepared by nonreactive mid-frequency magnetron sputtering from ceramic target with 2 wt.% doping source. Adjusting power density, ZnO:B film with low resistivity (1.54 × 10− 3 Ω cm) and high transparency (average transparency from 400 to 1100 nm over 85%) was obtained. Different deposition conditions were introduced as substrate fixed in the target center and hydrogen mediation. Hall mobility increased from 11 to above 26 cm2/V·s, while carrier concentration maintained almost the same, leading to low resistivity of 6.45 × 10− 4 Ω cm. Transmission spectra of ZnO:B films grown at various growth conditions were determined using a UV-visible-NIR spectrophotometer. An obvious blue-shift of absorption edge was obtained while transmittances between 600 nm and 1100 nm remained almost the same. Optical band baps extracted from transmission spectra showed irregular enhancement due to the Burstein-Moss effect and band gap renormalization. Photoluminescence spectra also showed a gradual increase at UV emission peak due to free exciton transition near band gap. We contributed this enhancement in both optical band gap and UV photoluminescence emission to the lattice structure quality melioration.  相似文献   

16.
Indium tin oxide (ITO) thin films were deposited on unheated polyethylene naphthalate substrates by radio-frequency (rf) magnetron sputtering from an In2O3 (90 wt.%) containing SnO2 (10 wt.%) target. We report the structural, electrical and optical properties of the ITO films as a function of rf power and deposition time. Low rf power values, in the range of 100-130 W, were employed in the deposition process to avoid damage to the plastic substrates by heating caused by the plasma. The films were analyzed by X-ray diffraction and optical transmission measurements. A Hall measurement system was used to measure the carrier concentration and electrical resistivity of the films by the Van der Pauw method. The X-ray diffraction measurements analysis showed that the ITO films are polycrystalline with the bixbite cubic crystalline phase. It is observed a change in the preferential crystalline orientation of the films from the (222) to the (400) crystalline orientation with increasing rf power or deposition time in the sputtering process. The optical transmission of the films was around 80% with electrical resistivity and sheet resistance down to 4.9 × 10- 4 Ωcm and 14 Ω/sq, respectively.  相似文献   

17.
Titanium oxide thin films are deposited at room temperature by reactive DC sputtering onto glass and Si (100) substrates. Different conditions of deposition were varied such as sputtering power, deposition time and oxygen partial pressure to study their influence on the titanium oxide thin films growth. The absolute amount of oxygen and the relative O/Ti composition of films have been determined by Nuclear Reaction Analysis and Rutherford Backscattering Spectroscopy, respectively. Additionally, the band-gap was determined by measuring the optical absorption and its behavior correlated with the oxygen film content. From the present study, it is possible to establish that the optical band-gap energy depends mainly on the sputtering oxygen partial pressure used at the preparation and that films prepared with a partial oxygen pressure of 4 × 10− 2 Pa allows titanium oxide with near stoichiometric composition. Additionally, from the optical point of view, band-gap energies of 3.4 eV are obtained for near stoichiometric films and a decrease is observed for samples prepared with higher oxygen concentrations.  相似文献   

18.
Transparent conducting Al and Y codoped zinc oxide (AZOY) thin films with high transparency and low resistivity were deposited by DC magnetron sputtering. The effects of substrate temperature on the structural, electrical and optical properties of AZOY thin films deposited on glass substrates have been investigated. X-ray diffraction spectra indicate that no diffraction peak of Al2O3 or Y2O3 except that of ZnO (0 0 2) is observed. The AZOY thin film prepared at substrate temperature of 250 °C has the optimal crystal quality inferring from FWHM of ZnO (0 0 2) diffraction peak, but the AZOY thin film deposited at 300 °C has the lowest resistivity of 3.6 × 10−4 Ω-cm, the highest mobility of 30.7 cm2 V−1 s−1 and the highest carrier concentration of 5.6 × 1020 cm−3. The films obtained have disorderly polyhedral surface morphology indicating possible application in thin film solar cell with good quality and high haze factor without the need of post-deposition etching.  相似文献   

19.
Nanoindentation studies have been carried out for TiB2 films deposited on Si, glass and steel by sputtering for studying the influence of the substrates. It was observed that the modulus of the film was influenced by the substrates from 30 nm onwards. Plastic energy analysis has shown that as load increases more energy is absorbed by the substrate. Quantitative indentation depth limits for obtaining film only hardness, using a combination of log-log plot of load vs displacement and load vs (displacement)2 functions, have shown the dependence on the threshold load for crack formation. Comparison of the hardness data with composite hardness models has been performed. Fracture toughness of the coatings was also evaluated using two methods which resulted in comparable results.  相似文献   

20.
In this paper, we characterize high transparency p-type semiconducting NiO thin films deposited by Direct Current Reactive Magnetron Sputtering from a pure Ni target in a mixture of oxygen and argon gases on Corning glass/SnO2:F substrates at different oxygen contents ranging from 0% at 30%. The influence of the O2/Ar ratio and thickness on transmittance has been examined using ultraviolet-visible spectroscopy. The results show that whatever the oxygen proportion into the discharge, the nickel oxide films exhibit a polycrystalline structure. At low oxygen content, the preferential orientation is (111), for stoichiometric films the XRD diagram is powder-like whereas the preferential orientation is (200) for higher oxygen content. For low and high oxygen content, the transmittance is low. Thanks to plasma method and its ability to tune the oxygen content in the discharge and therefore the film composition, we have been able to explore carefully the intermediate zone and obtain transparent films. The optical absorption coefficient α has been calculated from the transmittance and the variation of (αhν)2 versus the photon energy (hν) for nickel oxide is presented. The optical band gap energy has been evaluated and varies from 3.2 to 3.8 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号