首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics and efficiency of 3,3′,4,4′-tetrachlorobiphenyl (PCB77) degradation in aqueous solution by hybrid Fe0/Fe3O4 nanoparticle system were investigated. The results showed that nano-sized Fe0 and Fe3O4 could efficiently degrade PCB77, and the residual rate of PCB77 by nano-sized Fe0 and Fe3O4 were 67.70% ± 0.42% and 82.26% ± 2.96%, respectively after 240 min of reaction (for 5 mg·L?1 PCB77 and 5 g·L?1 nanoparticles). The combined use of nanoscale Fe0 and Fe3O4 could enhance the degradation of PCB77. The dose ratios of nano-sized Fe0 and Fe3O4 significantly affected the PCB77 degradation rate. At Fe0/Fe3O4 ratios of 1:0.1, 1:0.2 and 1:1, the residual rates of PCB77 were 6.46%, 10.23% and 38.20%, respectively. The PCB77 degradation efficiency was also greatly affected by solution pH, and was maximised at pH 6.8. The degradation of PCB77 by Fe0/Fe3O4 nanoparticle was a dechlorination process, and the chlorion concentration increased with the decreasing residual rate of PCB77 accordingly. Fe3O4 provided Fe2+ and Fe3+ for enhancing the PCB77 degradation by nanoscale Fe0, suggesting a synergy between Fe0 and Fe3O4.  相似文献   

2.
Multiferroic BiFeO3 (BFO) and BiFe1?xCrxO3 (BF1?xCxO, x?=?0.05, 0.1, 0.15 and 0.2) thin films were successfully synthesized on silicon (111) substrates via sol–gel technology. The effect of Cr3+ ion doping on the phase structure, surface morphology, valence states for Fe element and magnetic property was investigated. The introduction for simulation images of ionic space arrangement was to better comprehend the substitution site and superexchange interaction between the Fe3+ (Cr3+) and O2? ions. The phase structure of Cr-doping thin films transition from rhombohedral to orthorhombic was confirmed by the X-ray diffraction (XRD) and Raman measurements, and the obtained results also demonstrated that the Cr3+ ions successfully located in Fe2+ and Fe3+ ions sites of BFO lattice system. The Field Emission Scanning Electron Microscopy (FESEM) patterns clearly exhibited that the grains sizes were remarkably decreased by Cr3+ ions doping, and the surfaces textures got glossier and smoother judging from the Atomic Force Microscope (AFM) images. The dense surface structure can restrict the O2? ions escaping from the lattices system, which is beneficial for the release of magnetic property due to superexchange interaction of improvement. It was found that the saturation magnetization (Ms) was significantly linearly increased accompanying the adding of Cr-doping due to destroying of spatial modulation helical structure and enhancing of superexchange interaction. Moreover, the Hall-effect results firstly revealed that the carrier concentration and mobility rate played significant roles in magnetoelectric effect behaviors.  相似文献   

3.
Thin films of the zinc nickel ferrite, Zn0.7Ni0.3Fe2O4 (ZNFO), were deposited by the RF magnetron sputtering on a number of substrates, including (001) oriented single crystals of LaAlO3 (LAO) and SrTiO3 (STO), polycrystalline Pt/Si, and epitaxial films of BiFeO3 (BFO) and LaNiO3 (LNO). Except for the films on Pt/Si, the ZNFO films grown on other substrates were epitaxial and their magnetic properties were affected by the heteroepitaxy induced strains. Typically, the coercivity (Hc) was increased with the strain, i.e. Hc varied from 31 Oe for the 150 nm thick polycrystalline films grown on Pt/Si, to 55 Oe and 155 Oe for the 20 nm thick epitaxial films grown on BFO and LAO, respectively. The saturation magnetization of the epitaxial films was reduced accordingly to about 470 emu/cm3 from 986 emu/cm3 in the polycrystalline films. The all-oxide architecture allowed field-annealing to perform at the temperature above the Neel temperature of BFO (~ 370 °C), after which clear exchange bias was observed.  相似文献   

4.
In the study, the degradation of landfill leachate by single ultrasound (sonolytic) and sonolytic combined with Fe2+ and TiO2 catalysts was carried out in laboratory conditions. The effect of pH and ultrasonic wave amplitude was also investigated in terms of color removal, total organic carbon (TOC) and chemical oxygen demand (COD) from leachate by the sonolytic degradation process. In this process, the color removal efficiency was recorded as 81.81% at 620?nm, pH?=?2.0 and 70% wave amplitude. The sonocatalytic degradation of landfill leachate accompanied by different catalysts was studied by using the 70% wave amplitude at pH?=?2.0 and room temperature for 20?min. The sonocatalytic degradation of leachate by using Fe2+ and TiO2 was found to be significantly higher than sonolytic degradation (p?2+ concentration increased from 1.0 to 3.0?mg/L, the COD and color removal of leachate significantly decreased (p?相似文献   

5.
Pre-treatment of simulated industrial wastewaters (SIM1, SIM2 and SIM3) containing organic and inorganic compounds (1,2-dichloroethane, sodium formate, sodium hydrogen carbonate, sodium carbonate and sodium chloride) by oxidative degradation using homogeneous Fenton type processes (Fe2+/H2O2 and Fe3+/H2O2) has been evaluated. The effects of initial Fe2+ and Fe3+ concentrations, [Fe2+/3+], type of iron salt (ferrous sulfate vs. ferric chloride), initial hydrogen peroxide concentration, [H2O2], on mineralization extent, i.e., total organic content (TOC) removal, were studied. Response surface methodology (RSM), particularly Box–Behnken design (BBD) was used as modelling tool, and obtained predictive function was used to optimize the overall process by the means of desirability function approach (DFA). Up to 94% of initial TOC was removed after 120 min. Ferrous sulfate was found to be the most appropriate reagent, and the optimal doses of Fe2+ and H2O2 for reducing the pollutant content, in terms of final TOC and sludge production were assessed.  相似文献   

6.
Polycrystalline BiFeO3 (BFO), Bi0.90Gd0.10FeO3 (BGF), Bi0.90Gd0.10Fe1?xTixO3 (x = 0.03–0.10; BGFTx) ceramics were prepared via solid state reaction method. X-ray diffraction studies reveal R3c symmetry for BFO and BGF samples and coexistence of R3c + Pn2 1 a symmetries for BGFTx samples. The change in line width of Raman modes indicates the structural distortion and substitution of dopants ions in the BFO lattice. Magnetic studies show weak ferromagnetism in BGF and BGFTx samples as a result of Gd3+–Fe3+, Gd3+–Gd3+ interactions and imbalance created between two antiparallel Fe3+ spin sublattices by Ti substitution. The maximum remnant magnetization of 0.141 emu/g is observed for BGFTx=0.10 sample. Further, electron spin resonance study confirms the weak ferromagnetism of BGFTx samples, associated with small grains and increase in anisotropy of particles distribution as found during SEM studies. UV–Visible absorption spectra in the spectral range from 1.6 to 3.5 eV showed one d–d crystal field transition and two charge-transfer transitions with optical band gap variation in visible region. Improved dielectric properties with very low values of dielectric loss have been observed for BGF and BGFTx samples.  相似文献   

7.
Interest in the photocatalytic oxidation of formaldehyde from contaminated wastewater is growing rapidly. The photocatalytic activity of the nanocrystalline Fe3+/F? co-doped TiO2–SiO2 composite film for the degradation of formaldehyde solution under visible light was discussed in this study. The films were characterised by field emission scanning electron microscopy (FE-SEM) equipped with energy-dispersive spectroscopy, X-ray diffraction (XRD), BET surface area, UV–Vis absorption spectroscopy, and photoluminescence spectroscopy. The FE-SEM results revealed that the Fe3+/F? co-doped TiO2–SiO2 film was composed of uniform round-like nanoparticles or aggregates with the size range of 5–10 nm. The XRD results indicated that only the anatase phase was observed in the film. Compared with a pure TiO2 film and a singly modified TiO2 film, the Fe3+/F? co-doped TiO2–SiO2 composite film showed the best photocatalytic properties due to its strong visible light adsorption and diminished electrons-holes recombination.  相似文献   

8.
The assembly of superparamagnetic Fe3O4 nanoparticles on submicroscopic SiO2 spheres have been prepared by an in situ reaction using different molar ratios of Fe3+/Fe2+ (50–200%). It has been observed that morphology of the assembly and properties of these hybrid materials composed of SiO2 as core and Fe3O4 nanoparticles as shell depend on the molar ratio of Fe3+/Fe2+.  相似文献   

9.
Multiferroic BiFeO3/Bi4Ti3O12 (BFO/BTO) double-layered film was fabricated on a Pt(111)/Ti/SiO2/Si(100) substrate by a chemical solution deposition method. The effect of an interfacial BTO layer on electrical and magnetic properties of BFO was investigated by comparing those of pure BFO and BTO films prepared by the same condition. The X-ray diffraction result showed that no additional phase was formed in the double-layered film, except BFO and BTO phases. The remnant polarization (2Pr) of the double-layered film capacitor was 100 μC/cm2 at 250 kV/cm, which is much larger than that of the pure BFO film capacitor. The magnetization-magnetic field hysteresis loop revealed weak ferromagnetic response with remnant magnetization (2Mr) of 0.4 kA/m. The values of dielectric constant and dielectric loss of the double-layered film capacitor were 240 and 0.03 at 100 kHz, respectively. Leakage current density measured from the double-layered film capacitor was 6.1 × 10− 7 A/cm2 at 50 kV/cm, which is lower than the pure BFO and BTO film capacitors.  相似文献   

10.
Nanoscaled Ag/Fe3O4 hybrids with different Ag contents and Cu/Fe3O4 nanoshpere and microsphere were successfully synthesized with assistance of sodium citrate and (CH2)6N4 via a hydrothermal process. The as-prepared samples were identified and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), and X-ray photoelectron spectroscopy (XPS), respectively. All samples were used as electrocatalysts modified on a glassy carbon electrode for p-nitrophenol reduction in a basic solution. The catalytic activity of Ag/Fe3O4 samples increased first and then decreased by increasing Ag content from 0% to 8%, and the one with 6% Ag displayed the highest catalytic activity. All the Cu/Fe3O4 samples exhibited enhanced catalytic activity by comparison with a glassy carbon electrode, and the one prepared with the molar ratio of Cu2+, Fe3+, citrate anion, and (CH2)6N4 with 1:1:3:5 exhibited the highest catalytic activity.  相似文献   

11.
Pure BiFeO3 (BFO) and Bi0.85Sm0.15Fe0.97Cr0.03O3 (BSFCO) thin films were prepared on FTO/glass (SnO2: F) substrates by using a chemical solution deposition method. The effects of (Sm, Cr) co-doping on the microstructure and ferroelectric properties of the BSFCO thin films were studied. The X-ray diffraction and Raman scattering spectra proved that the co-doped BSFCO thin film has a lattice distortion compared with the pure BFO thin film. The remnant polarization (2P r) of the BSFCO thin film was 153.67 μC/cm2 at 1 kHz in the applied electric field of 1,270 kV/cm. At an applied electric field of 100 kV/cm, the leakage current density of the co-doped BSFCO thin film (2.12 × 10?6 A/cm2) was 3 orders lower than that of the pure BFO thin film (3.8 × 10?3 A/cm2). The improved properties of the co-doped thin film could be attributed to lattices distortion, more grain boundaries, higher binding energy of Sm–O and the mixed-valence states of Cr3+ and Cr 6+.  相似文献   

12.
The photocatalytic oxidation of the azo dye Orange-II (Or-II) using Fe loaded TiO2 (Fe–TiO2) was studied under ultraviolet (UV), visible (vis) and simultaneous UV–vis irradiations using a solar light simulator. Photocatalysts were characterized by means of XRD, SEM-EDX, FTIR and DRS. Fe3+ species, identified in XPS analyses, were responsible of the increased absorption of visible light. Moreover, DRS analyses showed a decrease in the bandgap due to Fe3+ loading. Photocatalystic tests proved that Fe modification enhanced the TiO2 photocatalytic activity towards Or-II photodegradation under simultaneous UV–vis irradiation. Even so, the performance of the Fe–TiO2 samples towards the photodegradation of phenol, under UV irradiation, was lower than TiO2 suggesting the recombination of the UV photogenerated electron–hole pair. Therefore, results evidence a Fe3+ promotion of the electron caption in the photosensitization process of TiO2 by Or-II acting as a sensitizer. Such process leads to the Or-II photooxidation under UV–vis irradiation by losing energy in electron transferring processes to sensitize TiO2, and, the formation of reactive oxygen species promoted by the injected electron to the TiO2 conduction band.  相似文献   

13.
Chestnut shell (CS) acts as a multi-functional material in the one-step preparation of Fe3O4@C nanocomposite via hydrothermal method by using Fe(NO3)3 as Fe source without adding any other additives. The characterized results show that under required hydrothermal conditions, a proper amount of CS can reduce a certain amount of adsorbed/enriched Fe3+ to Fe2+ to ensure the 2:1 molar ration of Fe3+ to Fe2+ and the in-situ formation of goal phase Fe3O4 on the surface of the CS. Meanwhile, CS is carbonized to C material similar to graphene oxide. In the preparation process of the composite of Fe3O4@C, CS plays multiple roles, such as promoter, reductive agent, C-source, and template, to endow a certain morphology of the nanocomposite Fe3O4@C. The composite material shows good magnetic separability and adsorption property for methylene blue (MB) solution. Furthermore, the adsorptive kinetic behavior of the Fe3O4@C is investigated. The method is simple, fast, low cost and green and really realizes the full use of wasteful resource CS.  相似文献   

14.
We report a potential way to effectively improve the magnetic properties of BiSrFeO3 (BSFO) through Mg 2+ ion substitution at the Fe sites of BFO lattice. Polycrystalline Bi0.95Sr0.05Fe0.98Mg0.02 O 3 (BSFMO) powder was prepared through optimized solid-state (SS) and sol-gel (SG) reaction methods. The effect of preparation routes on the crystal purity and multiferroic properties of the BSFMO was investigated. The purity and structural changes induced by Mg doping are confirmed by X-ray powder diffractometer and IR spectra. Enhanced magnetic properties are observed in Mg-substituted samples, which simultaneously exhibit ferromagnetic and superparamagnetic properties at room temperature. The improved magnetic properties and soft nature obtained by Mg doping in BSFO particles demonstrate the possibility of BFO particles to practical applications.  相似文献   

15.
MnO2 nanofiber was found to possess high adsorption capacities for heavy metal ions such as, arsenic and lead, in water due to its high specific surface area (SSA) and high surface activity. However, a significant amount of manganese was found to leach from MnO2 nanofibers. Reducing MnO2 dissolution is very important for improving its applications in drinking water treatment. In this study, MnO2 nanofiber was doped with Fe3+ to reduce its dissolution in water. Dissolution tests were conducted on un-doped and Fe-doped MnO2 nanofibers. The results revealed that doping with Fe3+ significantly reduced MnO2 dissolution. SSA and defects of MnO2 materials were analyzed by BET and XRD methods. The effects of Fe3+ on MnO2 dissolution were discussed and the optimal dopant amount was identified.  相似文献   

16.
In this paper, ZnS:Mn2+ quantum dots (QDs) Fe3O4 quantum dots (QDs)/SiO2 nanocomposites were successfully synthesized by reverse microemulsion method. The average diameter of ZnS:Mn2+ QDs, Fe3O4 QDs and ZnS:Mn2+ QDs Fe3O4 QDs/SiO2 nanocomposites was about 5.8, 9 and 29 nm, respectively. As the mass ratio of ZnS:Mn2+ to Fe3O4 QDs increased from 2.5:4 to 7.5:4, the intensity of the yellow–orange emission coming from Mn2+ ions was increased. The superparamagnetic property of ZnS:Mn2+ QDs Fe3O4 QDs/SiO2 nanocomposites was observed at room temperature, and the saturation magnetization was decreased as the amount of ZnS:Mn2+ QDs increased.  相似文献   

17.
Here we studied the effect of homovalent Pr3+ and Y3+ substitution on the crystal structure, dielectric, electronic polarization and magnetic properties of the BiFeO3 multiferroic ceramic. The samples were synthesized by the conventional solid-state reaction method. Pure phase formation of Pr doped BiFeO3 (BFO) has been obtained, while Y3+ doped BFO has shown a few impurity peaks. It has shown that the crystal structure of the compounds is described within the space group R3c. Pr3+ modified BFO has shown an anomaly in the ε r vs. T plot around and a Néel temperature ‘T N’~370 °C. PE hysteresis loops have shown higher value of remnant polarization for Pr3+ modified BFO. Magnetic properties of ceramics are determined by the ionic radius of the substituting element. Experimental results propose that the increase in the radius of A-site ion leads to effective suppression of the spiral spin structure of BiFeO3, resulting in the appearance of net magnetization.  相似文献   

18.
Fe3+ doped TiO2 composite nanofiber membranes and pure TiO2 nanofiber membranes were prepared through electrospinning, and were applied to the photocatalytic degradation of malachite green (MG) in aqueous solutions under simulated sunlight. The effects of ferric ion content, initial concentration of MG, photocatalyst loading, and recycling behavior were studied. Microscopic characterization showed that the products have fiber morphology with bent property and favorable continuity. The degradation results showed that TiO2 nanofiber membranes containing 0.8 mol% Fe3+ performed the best photocatalytic activity against MG under identical light irradiation. The TiO2:Fe3+ composite nanofiber membranes maintained their photocatalytic efficiency through seven recycling processes.  相似文献   

19.
Based on our previous work on the green preparation of Ag–TiO2 photocatalyst with bactericidal activity under visible light, we extended our studies to the synthesis of TiO2–Fe3+ materials with enhanced photocatalytic activity for the degradation of recalcitrant organic pollutants in water. TiO2–Fe3+ nanopowders were synthesized using a robust, environmentally friendly procedure. Established amounts of Fe(NO3)3·9H2O and titanium tetraisopropoxide (TTIP) were mixed using glacial acetic acid as solvent. Hydrolysis of TTIP–Fe3+ was accomplished using a 30 % (W/V) Arabic gum aqueous solution. TiO2–Fe3+ nanopowders were obtained by thermal treatment at 400 °C. In order to elucidate the structure of these photocatalysts, microscopic and spectroscopic characterization techniques were applied. The high resolution transmission electron microscopy (HRTEM) analysis indicated the presence of uniformly distributed particles with average particle size of about 9 nm. According to the HRTEM lattice fringes, ring pattern, and selected area electron diffraction pattern, the crystalline part of the samples consists of anatase (PDF 01-086-1157 with the lattice constant of 3.7852, 9.5139 Å and 90°) as dominant phase. X-ray photoelectron spectroscopy (XPS) was applied to determine the oxidation state of iron. The XPS provides evidence for Fe3+ surface species in the TiO2–Fe3+ composite. Complete degradation of aqueous solutions (20 ppm) of methylene blue and/or methyl orange was accomplished after 4 h of treatment using 150 mg of TiO2–Fe3+/150 mL of dye solution. The in vitro toxicity of the materials was tested. The materials showed no toxicity against human red blood cells.  相似文献   

20.
The structural and magnetic properties of the mixed spinel Co1+x Si x Fe2?2x O4 system for 0·1≤x≤0·6 have been studied by means of X-ray diffraction, magnetization, and Mössbauer spectroscopy measurements. X-ray intensity calculations indicate that Si4+ ions occupy only tetrahedral (A) sites replacing Fe3+ ions, and the added Co2+ ions substitute for (B) site Fe3+ ions. The Mössbauer spectra at 300 K have been fitted with two sextets in the ferrimagnetic state corresponding to Fe3+ at the A and B sites, forx≤0·3. The Mössbauer intensity data shows that Si possesses a preference for the A site of the spinel. The variation of the saturation magnetic moment per formula unit measured at 300 K with the Si content, is explained on the basis of Neel’s collinear spin ordering model forx≤0·3 which is supported by Mössbauer, and X-ray data. The Curie temperature decreases nearly linearly with increase of the Si content, forx=0·1–0·6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号