首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
通过定量金相,SEM&EDS、TEM等实验技术分析316L奥氏体不锈钢中析出相随时效时间、温度的变化,并测定析出相的体积分数与尺寸.结合热力学计算表明:在316L奥氏体不锈钢中,经850℃时效处理后,析出相为M23C6型碳化物,且随着时效时间的延长,析出量明显增多,尺寸增大;经650℃时效处理100 h后,主要析出相类型为χ相.  相似文献   

2.
Formation of the reversed austenite obtained by intercritical tempering has been studied via transmission electron microscopy (TEM) in a Fe-13%Cr-4%Ni-Mo low carbon martensitic stainless steel. It is found that the precipitation of M23C6 carbides along the martensite lath boundaries will result in Ni-enrichment in the adjacent region. The reversed austenite forms with the Ni-enrichment region as the nucleation sites, keeps a cube-cube orientation relationship with the M23C6 carbides and bears the Kurdjumov-Sachs (K-S) relationship with the martensite. Moreover, the reversed austenite formed inside the martensite laths is also confirmed. The mechanism for formation of the reversed austenite is discussed in detail.  相似文献   

3.
The corrosion behavior of 2205 duplex stainless steel was investigated in hot concentrated seawater with different dissolved oxygen(DO) concentration by electrochemical measurement techniques and surface analysis methods. DO obviously enhances the cathodic reaction process, the formation of passive film and polarization resistance. With increasing the DO concentration from 0.34 to 3.06 mg L-1, the relative contents of Fe2O3 and Cr2O3 and the Cr-enrichment gradually enlarge in the passive film. The higher DO concentrations result in lower defect densities and thicker of space charge layers in the passive films,whichmayeffectively inhibit the intrusion of aggressive chloride ions. The increment inDOconcentration clearly increases the pitting potential, but decreases the repassivation potential. It may weaken both the occurrence and repassviation tendencies of stable pitting corrosion.  相似文献   

4.
Abstract

It is crucial for the carbon concentration of 9% Cr steel to be reduced to a very low level, so as to promote the formation of MX nitrides rich in vanadium as very fine and thermally stable particles to enable prolonged periods of exposure at elevated temperatures and also to eliminate Cr-rich carbides M23C6. Sub-boundary hardening, which is inversely proportional to the width of laths and blocks, is shown to be the most important strengthening mechanism for creep and is enhanced by the fine dispersion of precipitates along boundaries. The suppression of particle coarsening during creep and the maintenance of a homogeneous distribution of M23C6 carbides near prior austenite grain boundaries, which precipitate during tempering and are less fine, are effective for preventing the long-term degradation of creep strength and for improving long-term creep strength. This can be achieved by the addition of boron. The steels considered in this paper exhibit higher creep strength at 650 °C than existing high-strength steels used for thick section boiler components.  相似文献   

5.
The martensitic stainless steels are widely used in many industries with their excellent mechanical properties and sufficient corrosion resistance. These steels usually are used for a wide range of applications like nuclear power plants, steam generators, mixer blades, pressure vessels, turbine blades, surgical tools, instrument manufacturing and so on. Contrary to good mechanical and corrosion properties of martensitic steels, poor weldability and cold cracking sensitivity are major problems that are faced in joining of these steels. In this study, the weldability of AISI 420 (X30Cr13) martensitic stainless steel by CO2 laser beam welding method has been investigated. Effects of pre and post weld heat treatments on mechanical properties and microstructure of laser welded AISI 420 martensitic stainless have also been determined. As a conclusion, it was determined that pre and post weld heat treatments sufficiently improved the mechanical properties of the welds.  相似文献   

6.
通过电化学噪声技术(EN)、动电位扫描法、噪声电阻(Rn)等方法研究了304L不锈钢在含Cl-溶液中的腐蚀行为过程,探讨了Cl-对304L不锈钢腐蚀行为的影响,以及腐蚀的形成、特征、机理。结果表明,由于有Cl-的存在,对不锈钢金属的钝化膜的破坏必然导致腐蚀过程中离子扩散速度的加快,因此,Cl-对304L不锈钢腐蚀行为有着明显的钝化作用。  相似文献   

7.
8.
The pitting corrosion resistance of commercial super duplex stainless steels SAF2507 (UNS S32750) annealed at seven different temperatures ranging from 1030 °C to 1200 °C for 2 h has been investigated by means of potentiostatic critical pitting temperature. The microstructural evolution and pit morphologies of the specimens were studied through optical/scanning electron microscope.Increasing annealing temperature from 1030 °C to 1080 °C elevates the critical pitting temperature, whereas continuing to increase the annealing temperature to 1200 °C decreases the critical pitting temperature. The specimens annealed at 1080 °C for 2 h exhibit the best pitting corrosion resistance with the highest critical pitting temperature. The pit morphologies show that the pit initiation sites transfer from austenite phase to ferrite phase as the annealing temperature increases. The aforementioned results can be explained by the variation of pitting resistance equivalent number of ferrite and austenite phase as the annealing temperature changes.  相似文献   

9.
张玉祥  王任甫  张由景  蒋颖  黄冬 《材料工程》2022,50(11):135-144
采用经验公式、热力学计算方法、Gleeble热/力模拟实验技术,结合光学显微镜、扫描电镜及透射电镜分析,研究了23Cr-14Ni高氮奥氏体不锈钢中σ相的析出行为。结果表明,23Cr-14Ni高氮奥氏体不锈钢中σ相可在960~1030℃析出,高于1050℃溶解。σ相析出具有异常快速的动力学特征,在经过1030℃保温1 min固溶处理后,σ相可直接从奥氏体晶界快速析出,析出先于碳氮化物相。σ相析出动力学行为及相对碳氮化物的析出次序和传统奥氏体不锈钢显著不同。铬、锰、钼元素含量较高且钼元素在晶界处偏聚提高了σ相平衡析出温度,是加速σ相析出的主要原因。  相似文献   

10.
利用透射电镜,研究了不同回火温度下的0.23C-12Ni-14Co-3Cr-1Mo钢逆转奥氏体组织,在482℃回火后,在马氏体板条边界生成逆转奥氏体,此时逆转奥氏体含量较少。随着回火温度升高,逆转奥氏体含量增多,并在马氏体板条边界及马氏体板条内形成。在482-650℃范围内回火,逆转奥氏体与基体遵从K-S关系。同时本文还讨论了逆转奥氏体的形成机制,从浓度起伏及能量起伏两个角度分析了逆转奥氏体的形成。  相似文献   

11.
Stainless steel of type 321 is commonly used for the production of exhaust systems because of its temperature resistance and welding properties, which are better than those of AISI 304 or similar steels. AISI 321 is a titanium stabilized austenitic stainless steel, where this element is added to form carbides in order to avoid chromium impoverishment due to chromium carbide formation. Cold shaping can, in the case of austenitic stainless steel, cause the formation of deformation induced martensite, which can improve its mechanical properties, but unfortunately can also spoil its good resistance to corrosion. Titanium nitride inclusions are cathodic with respect to steels, and therefore cause their anodic dissolution. Martensite is, however, more susceptible to the corrosion than austenite in steels. The main aim of this study was to analyze the pitting corrosion and stress corrosion cracking which is initiated on prototype cold-formed outer exhaust sleeves during the testing of different cleaning procedures before chromium plating. Various microscopic methods were used to identify the initiation of corrosion and its propagation.  相似文献   

12.
Abstract

A gradient nanograined (GNG) surface layer was formed on a martensitic stainless steel bar sample by means of the surface mechanical grinding treatment (SMGT). The average grain size is ~25 nm on the topmost surface layer and increases gradually with increasing depth. The torsion fatigue strength is elevated by 38% with the GNG surface layer compared with the original material. An additional 8% increment in fatigue strength is achieved after a post-annealing treatment of the SMGT sample. By analysing the microstructure, hardness, surface roughness and residual stress distribution in the SMGT samples, we believe that the enhanced fatigue resistances originate from the GNG structure with a hard surface layer and a high structural homogeneity.  相似文献   

13.
Nitriding increases surface hardness and improves wear resistance of stainless steels. However, nitriding can sometimes reduce their corrosion resistance. In this paper, the influence of nitriding on the corrosion resistance of martensitic stainless steel was investigated. Plasma nitriding at 440 °C and 525 °C and salt bath nitrocarburizing were carried out on X17CrNi16‐2 stainless steel. Microhardness profiles of the obtained nitrided layers were examined. Phase composition analysis and quantitative depth profile analysis of the nitrided layers were preformed by X‐ray diffraction (XRD) and glow‐discharge optical emission spectrometry (GD‐OES), respectively. Corrosion behaviour was evaluated by immersion test in 1% HCl, salt spray test in 5% NaCl and electrochemical corrosion tests in 3.5% NaCl aqueous solution. Results show that salt bath nitrocarburizing, as well as plasma nitriding at low temperature, increased microhardness without significantly reducing corrosion resistance. Plasma nitriding at a higher temperature increased the corrosion tendency of the X17CrNi16‐2 steel.  相似文献   

14.
离子注入技术及离子注入对不锈钢腐蚀电化学行为的影响   总被引:1,自引:1,他引:0  
李青 《功能材料》2003,34(5):496-499,504
离子注入方法及注入工艺对改变金属表面成分和表面性能是极为有效的技术.离子注入对金属腐蚀行为的研究已有约30年的历史。本文概述了离子注入技术及离子注入对不锈钢腐蚀电化学行为的影响,涉及的注入离子达十余种。  相似文献   

15.
ABSTRACT

Formation of Laves phase in creep strength enhanced ferritic steel is investigated using re-austenitization and tempering treatment. The as-received material is exposed to 620°C for 4560?h aging, and then re-austenitizated at 1050°C for 1?h, and followed by tempering at 760°C for different times (2 and 4?h). After re-austenitization and tempering, the dissolution of Laves phase is observed while grain size and microhardness have not changed significantly. A model is suggested to quantify the dissolution of W-containing Laves phase. Thermo-Calc is used to predict driving forces for precipitation of Laves and M23C6 phases.  相似文献   

16.
为探索改善不锈钢耐腐蚀性能的途径,对316L不锈钢施加相同变形量的同步轧制和异步轧制,利用X射线衍射、透射电镜观察、电化学测量和扫描电镜表面观察研究了轧制工艺对钢的显微组织和腐蚀性能的影响.结果表明,经过异步轧制后显微组织中出现大量孪晶界,优化了晶界结构,在酸性介质中的晶间腐蚀敏感性明显减轻;而经过同步轧制后,样品呈现出高位错密度的显微组织,在酸性介质中的耐腐蚀性能降低.异步轧制后耐蚀性能得到改善是由于大量孪晶界的形成优化了晶界结构.  相似文献   

17.
Thin foil electron microscopy studies were made on the precipitation of lamellar M23C6 during aging at 973 K and 1073 K in water-quenched specimens of two austenitic stainless steels. After the precipitation on incoherent twin boundaries M23C6 formed on coherent twin boundaries and in the regions adjacent to incoherent twin boundaries. These precipitates showed lamellar morphology and were aligned in a specific manner with respect to the twin boundaries. Such lamellar precipitates were absent in the specimens which were isothermally treated at 1073 K after being transferred from the solution treatment temperature. The lamellar morphology of M23C6 is suggested to be developed by the influence of residual specific stress field around twin boundaries resulted from quenching.  相似文献   

18.
UNS S17400 steel is used in turbines for the aerospace and utility industries. While it is generally corrosion resistant, it is susceptible to pitting when exposed to aqueous chloride environments. Effects of pitting characteristics, such as depth, width, and local density on fatigue life, have been studied in this work to better inform criteria for component replacement or repair. While pit depth correlates well with cracking, the deepest pit never initiated the crack that ultimately led to failure. The clustering of pits, or local pitting density, also correlated well with crack initiation location; however, the densest region of pitting was not always the location where cracking occurred. There is likely no single metric that directly correlates pitting with fatigue cracking, rather there is a combination of pitting characteristics that ultimately lead to cracking. The results from this work suggest that pit depth and local pitting density are among the more important metrics.  相似文献   

19.
《材料科学技术学报》2019,35(8):1787-1796
Intergranular corrosion (IGC) behavior of the stabilized ultra-pure 430LX ferritic stainless steel (FSS) was investigated by using double loop electrochemical potentiokinetic reactivation (DL-EPR) and oxalic acid etch tests to measure the susceptibility of specimens given a two-step heat treatment. The results reveal that IGC occurs in the specimens aged at the temperature range of 600–750 °C for a short time. The aging time that is required to cause IGC decreases with the increase of aging temperature. A longer aging treatment can reduce the susceptibility to IGC. The microstructural observation shows that M23C6 precipitates form along the grain boundaries, leading to the formation of Cr-depleted zones. The presence of Cr-depleted zones results in the susceptibility to IGC. However, the atoms of stabilizing elements replace chromium atoms to form MC precipitates after long-time aging treatment, resulting in the chromium replenishment of Cr-depleted zones and the reduction of the susceptibility to IGC.  相似文献   

20.
The influence of surface roughness on the efficiency of a cyclic potentiodynamic passivation (CPP) method employed to increase the general and pitting corrosion resistance of 316LVM stainless steel was investigated. The results show that a decrease in surface roughness of both the surface on which the passive film was formed naturally and by the CPP method, results in an increase in general corrosion resistance of the material, while for the CPP-modified surface, a notable increase in pitting corrosion resistance was also observed. It was further demonstrated that the CPP method is highly effective in increasing the general and pitting corrosion resistance of 316LVM, and that its efficiency does not depend on the surface roughness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号