首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have studied the relaxor behavior of sol-gel derived Ba(Zr x Ti1− x )O3 (0.30≤ x≤0.70) thin films. The plausible mechanism of the relaxor behavior has been analyzed from the dielectric data and micro-Raman spectra. Substitution of Zr+4 for Ti+4 in BaTiO3 lattice reduces its long-range polarization order yielding a diffused paraelectric to ferroelectric phase transition. The solid solution system is visualized as a mixture of Ti+4 rich polar region and Zr+4 rich regions and with the increase in Zr contents the volume fraction of the polar regions are progressively reduced. At about 25.0 at% Zr contents the polar regions exhibit typical relaxor behavior. The degree of relaxation increases with Zr content and maximizes at 40.0 at% Zr doped film. The frequency dependence of the polar regions follows Vogel-Fulcher relation with a characteristic cooperative freezing at freezing temperature (T f). Below Tf, a long range polarization ordering was ascertained from the polarization hysteresis measurement.  相似文献   

2.
This paper reports the structural and dielectric properties of Ba(Ti1 − xZrx)O3 (x = 0-0.3) ceramics. Single-phase solid solutions of the samples were determined by X-ray diffraction. Microscopic observation by scanning electron microscope revealed dense, single-phase microstructure with large grains (20-60 μm). The evolution of dielectric behavior from a sharp ferroelectric peak (for x ≤ 0.08) to a round dielectric peak (for 0.15 ≤ x ≤ 0.25) with pinched phase transitions and successively to a ferroelectric relaxor (for x = 0.3) was observed with increasing Zr concentration. Compared with pure BaTiO3, broaden dielectric peaks with high dielectric constant of 25,000-40,000 and reasonably low loss (tanδ: 0.01-0.06) in the Ba(Ti1 − xZrx)O3 ceramics have been observed, indicating great application potential as a dielectric material.  相似文献   

3.
In this article, we report our studies on the relaxor behavior of Ba(Ti1−xHfx)O3 ceramics, made with close compositions between 0.20 ≤ x ≤ 0.30, to locate the hafnium concentration boundary for the normal to relaxor crossover. X-ray diffraction followed by Rietveld refinement shows the occurrence of single-phase cubic structure for the synthesized Ba(Ti1−xHfx)O3 ceramics. Temperature and frequency dependence of the real (?′) and imaginary (?″) parts of the dielectric permittivity has been studied in the temperature range of 90-350 K at frequencies of 0.1, 1, 10, and 100 kHz. A diffuse phase transition accompanying frequency dispersion is observed in the permittivity versus temperature plots revealing the occurrence of relaxor ferroelectric behavior. The Tm verses Hf concentration plot shows a discontinuous jump and change in the slope at x = 0.23. Quantitative characterization based on phenomenological models has also been presented. The plausible mechanism of the relaxor behavior has been discussed. Substitution of Hf4+ for Ti4+ in BaTiO3 reduces the long-range polar ordering yielding a diffuse ferroelectric phase transition.  相似文献   

4.
B-site modification lead strontium zirconate titanate Pb0.4Sr0.6ZrxTi1 − xO3 (PSZT, x = 0-0.7) thin films were prepared on Pt/TiO2/SiO2/Si substrates by a sol-gel method. The XRD results indicate that paraelectric PSZT thin films at room temperature are obtained as x approaches 0.2. The temperature-dependent dielectric and hysteresis loop measurements reveal that the thin films have diffuse phase transition characteristics and relaxor-like behavior with nano-polar regions in the paraelectric films at room temperature. The Curie temperature of the PSZT thin films varies with the Zr contents, exhibiting a complex trend. This can be attributed to two competitive factors: higher mobility of Ti4+ than Zr4+ and smaller open space left for the displacement of Ti ions with the increase of Zr content. The further increase of the Zr contents leads to the simultaneous decrease of dielectric constant, dielectric loss and tunability. PSZT (x = 0.4) thin film shows the largest figure of merit of 24.3 with a moderate tunability of 55.8% and a dielectric loss of 0.023. This suggests that B-site ions have different roles in modifying the electrically tunable performance of PSZT thin films for tunable microwave device applications.  相似文献   

5.
Thin films of ferroelectric relaxor Pb1 − 3x/2LaxZr0.2Ti0.8O3, x = 0.22 have been integrated in an oxidic heterostructure for electro-optical investigations. The quadratic electro-optic behavior and optical properties have been studied by means of variable angle spectroscopic ellipsometry method in reflection mode. Birefringence values up to δΔ = 0.17° have been obtained for quadratic compositions at λ = 540 nm and 65° angle of incidence. Structural, chemical and morphologic properties of Pb1-3x/2LaxZr0.2Ti0.8O3 (x = 0.22) thin films have been investigated by x-ray diffraction and atomic force microscopy techniques. The dielectric and ferroelectric behavior has been investigated using dielectric spectroscopy and a ferroelectric test system.  相似文献   

6.
Ba0.7Sr0.3(Ti1  xZrx)O3 (x = 0, 0.1, 0.2) (BSZT) thin films have been prepared on copper foils using sol-gel method. The films were annealed in an atmosphere with low oxygen pressure so that the substrate oxidation was avoided and the formation of the perovskite phase was allowed. The X-ray diffraction results show a stable polycrystalline perovskite phase, with the diffraction peaks of the BSZT films shifting toward the smaller 2θ with increasing Zr content. Scanning electron microscopy images show that the grain size of the BSZT thin films decreases with increasing Zr content. High resolution transmission electron microscopy shows the clear lattice and domain structure in the film. The dielectric peaks of the BSZT thin films broaden with increasing Zr content. Leakage current density of Ba0.7Sr0.3(Ti1  xZrx)O3 (x = 0.1) thin film is the lowest over the whole applied voltage.  相似文献   

7.
The microstructural evolution and dielectric properties of CaCu3−xTi4O12−x (3 − x = 2.8-3.05) ceramics were investigated. Normal grain growth behavior was observed at Cu/Ca ≤ 2.9, while abnormal grain growth was observed at Cu/Ca ≥ 2.95. A CuO-rich intergranular liquid phase at Cu/Ca ≥ 2.95 and angular grain morphology were the main reasons for abnormal grain growth. However, the abundant intergranular liquid at Cu/Ca = 3.05 significantly affected the relative dielectric permittivity and dielectric loss. The CuO composition is the key parameter that determines the microstructure and dielectric properties of CCTO ceramics.  相似文献   

8.
Thin films of Bi3.15Nd0.85Ti3O12 (BNT) and Bi3.15Nd0.85Ti3 − xZrxO12 (BNTZx, x = 0.1 and 0.2) were fabricated on Pt/TiO2/SiO2/Si(100) substrates by a chemical solution deposition (CSD) technique at 700 °C. Structures, surface morphologies, leakage current characteristics and Curie temperature of the films were studied as a function of Zr ion content by X-ray diffraction, atomic force microscopy, ferroelectric test system and thermal analysis, respectively. Experimental results indicate that Zr ion substitution in the BNT film markedly decreases the leakage current of the film, while almost not changing the Curie temperature of the film, which is at about 420-460 °C. The decrease of the leakage current in BNTZx films is that the conduction by the electron hopping between Ti4+ and Ti3+ ions is depressed because Zr4+ ions can block the path between two adjacent Ti ions and enlarge hopping distance.  相似文献   

9.
The Gd2(TixZr1 − x)2O7 (x = 0, 0.25, 0.50, 0.75, 1.00) ceramics were synthesized by solid state reaction at 1650 °C for 10 h in air. The relative density and structure of Gd2(TixZr1 − x)2O7 were analyzed by the Archimedes method and X-ray diffraction. The thermal diffusivity of Gd2(TixZr1 − x)2O7 from room temperature to 1400 °C was measured by a laser-flash method. The Gd2Zr2O7 has a defect fluorite-type structure; however, Gd2(TixZr1 − x)2O7 (0.25 ≤ x ≤ 1.00) compositions exhibit an ordered pyrochlore-type structure. Gd2Zr2O7 and Gd2Ti2O7 are infinitely soluable. The thermal conductivity of Gd2(TixZr1 − x)2O7 increases with increasing Ti content under identical temperature conditions. The thermal conductivity of Gd2(TixZr1 − x)2O7 first decreases gradually with the increase of temperature below 1000 °C and then increases slightly above 1000 °C. The thermal conductivity of Gd2(TixZr1 − x)2O7 is within the range of 1.33 to 2.86 W m− 1 K− 1 from room temperature to 1400 °C.  相似文献   

10.
Pure and Zr-substituted CaCu3(Ti1−x Zr x )4O12 (x = 0, 0.01, 0.02, 0.03) ceramics were prepared by the Pechini method. X-ray powder diffraction analysis indicated the formation of single-phase compound, and all the diffraction peaks were completely indexed by the body-centered cubic perovskite-related structure. The effects of Zr4+ ion substituting partially Ti4+ ion on the dielectric properties were investigated in frequency range between 100 Hz and 1 GHz. The low frequency (f ≤ 105 Hz) dielectric constant decreases with Zr substitution and the high frequency (f ≥ 107 Hz) dielectric constant is unchanged. Interestingly, a low-frequency relaxation was observed at room temperature through Zr substitution. The observed dielectric properties in Zr-substituted samples were discussed using the internal barrier layer capacitor model. A corresponding equivalent circuit was adopted to explain the dielectric dispersion. The characteristic frequency of low-frequency relaxation rises due to the decrease of the resistivity of grain boundary with Zr substitution, which is likely responsible for the large low-frequency response at room temperature.  相似文献   

11.
Pb(ZrxTi1 − x)O3 (x = 0.35, 0.40, 0.60, 0.65) thin films were prepared by sol-gel spin on technique. From the X-ray diffraction analysis, PZT films with Zr-rich compositions (x = 0.60 and 0.65) had (111) preferential orientation and the preferential orientation changed to (100) for Ti-rich compositions (x = 0.35 and 0.40). The dielectric measurements on the above compositions at room temperature showed that the dielectric constant values were higher in Zr-rich compositions compared to Ti-rich compositions. The ferroelectric behavior measured in terms of the remnant polarization (Pr) and coercive field (Ec) up to an applied field of 260 kV/cm depicted that the Zr-rich PZT films with (111) preferential orientation had higher Pr and lower Ec values compared to the Ti-rich PZT films with (100) preferential orientation can be understood from the domain switching mechanism.  相似文献   

12.
Sintering behavior, microstructure and microwave dielectric properties of Li2+xTiO3 (0 ≤ x ≤ 0.2) ceramics have been studied by X-ray diffraction (XRD), scan electron microscopy (SEM), Raman spectra, dilatometery and microwave resonant measurement in this research. Homogeneous non-stoichiometric composition with rock salt structure existed for Li2+xTiO3 (0 ≤ x ≤ 0.2) ceramics. The sintering temperature was successfully reduced and highly densified sample could be obtained with appropriate excessive amount of lithium (x = 0.08). A transient reactive liquid phase sintering mechanism was proposed. The preferred orientation of grain growth and micro-cracks existed in the Li2TiO3 (x = 0) sample disappeared in the lithium excessive samples with x ≥ 0.08. The microwave dielectric properties varied significantly with the excessive amount of lithium. Optimized microwave dielectric properties were obtained for the x = 0.08 composition: ?r = 24.6, Q × f = 66,000 GHz, and τf = 22.1 ppm/°C.  相似文献   

13.
Microwave dielectric ceramics in the Sr1−xCaxLa4Ti5O17 (0 ≤ x ≤ 1) composition series were prepared through a solid state mixed oxide route. All the compositions formed single phase ceramics within the detection limit of in-house X-ray diffraction when sintered in the temperature range 1450-1580 °C. Theoretical density and molar volume decreased due to the substitution of Ca2+ for Sr2+ which was associated with a decrease in the dielectric constant (?r) and temperature coefficient of resonant frequency (τf) but an increase in quality factor, Qfo. Optimum properties were achieved for Sr0.4Ca0.6La4Ti5O17 which exhibited, ?r ∼ 53.7, Qfo ∼ 11,532 GHz and τf ∼ −1.4 ppm/°C.  相似文献   

14.
The progress in wireless communications and information access has demanded the use of electronic ceramics exhibiting desired properties. To further our understanding of these properties, compounds in the Ln2Ti2-2xM2xO7 (Ln=Gd, Er; M=Zr, Sn, Si) systems were synthesized by ceramic methods and characterized by powder X-ray diffraction. The ZrO2-doped Gd2Ti2−2xZr2xO7 compounds adopt the pyrochlore structure type and form a complete solid solution. Er2Ti2−2xZr2xO7 forms a pyrochlore solid solution for x<0.1. However, stoichiometric Er2Zr2O7 does not form; instead Er4Zr3O12 forms a with defect fluorite structure. The Sn-doped Ln2Ti2−2xSn2xO7 (Ln=Gd, Er) compounds form complete solid solutions, and the Si compounds adopt the pyrochlore structure up to x=0.05. At ambient temperature, dielectric constants range from 10 to 61 for Er2Ti2−2xZr2xO7 and 16-31 for Gd2Ti2−2xZr2xO7 with low dielectric loss (1×10−3) at 1 GHz.  相似文献   

15.
The phase structure, microwave dielectric properties, and their stability with different annealing conditions have been investigated in (Li1/4Nb3/4) substituted ZrxSnyTizO4 system. The sintering temperature of ZrxSnyTizO4 ceramic was lowered from 1500 to 1140 °C by (Li1/4Nb3/4) substitution. Both X-ray diffraction (XRD) analysis and electron diffraction (ED) analysis revealed that the (Li1/4Nb3/4) substituted ZrxSnyTizO4 ceramic crystallized as the high-temperature disordered ZrTiO4 phase. As the content of Sn increased from 0.10 to 0.30, the permittivity of the (Zr1−xSnx)(Li1/4Nb3/4)0.4Ti0.6O4 ceramic decreased gradually from 35.5 to 31.5, the Qf value increased from 37,800 to 58,300 GHz, and TCF value shifted slightly from −4.5 to −33.0 ppm °C−1. Both the phase structure and microwave dielectric properties of (Zr1−xSnx)(Li1/4Nb3/4)0.4Ti0.6O4 ceramics were stable with annealing conditions.  相似文献   

16.
High-k dielectric titanium silicate (TixSi1 − xO2) thin films have been deposited by means of an optimized sol-gel process. At the optimal firing temperature of 600 °C, the Ti0.5Si0.5O2 films are shown to exhibit not only a dielectric constant (k) as high as ∼ 23 but more importantly the lowest leakage current and dielectric losses. Fourier transform infrared spectroscopy shows an absorbance peak at 930 cm− 1, which is a clear signature of the formation of Ti-O-Si bondings in all the silicate films. The developed sol-gel process offers the required latitude to grow TixSi1 − xO2 with any composition (x) in the whole 0 ≤ x ≤ 1 range. Thus, the k value of the TixSi1 − xO2 films can be tuned at any value between that of SiO2 (3.8) to that of TiO2 (k ∼ 60) by simply controlling the TiO2 content of the films. The composition dependence of the dielectric constant of the TixSi1 − xO2 films is analyzed in the light of existing models for dielectric composites.  相似文献   

17.
10 mol% Pb(Fe1/2Nb1/2)O3 (PFN) modified Pb(Mg1/3Nb2/3)O3-PbZr0.52Ti0.48O3 (PMN-PZT) relaxor ferroelectric ceramics with compositions of (0.9 − x)PMN-0.1PFN-xPZT (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9) were prepared. X-ray diffraction investigations indicated that as-prepared ceramics were of pure perovskite phase and the sample with composition of x = 0.8 was close to morphotropic phase boundary (MPB) between rhombohedral and tetragonal phase. Dielectric properties of the as-prepared ceramics were measured, and the Curie temperature (Tc) increased sharply with increasing PZT content and could be higher than 300 °C around morphotropic phase boundary (MPB) area. At 1 kHz, the sample with composition of x = 0.1 had the largest room temperature dielectric constant ?r = 3519 and maximum dielectric constant ?m = 20,475 at Tm, while the sample with composition of x = 0.3 possessed the maximum dielectric relaxor factor of γ = 1.94. The largest d33 = 318 pC/N could be obtained from as-prepared ceramics at x = 0.9. The maximum remnant polarization (Pr = 28.3 μC/cm2) was obtained from as-prepared ceramics at x = 0.4.  相似文献   

18.
Chen L  Holec D  Du Y  Mayrhofer PH 《Thin solid films》2011,519(16):5503-5510
Multinary Ti-Al-N thin films are used for various applications where hard, wear and oxidation resistant materials are needed. Here, we study the effect of Zr addition on structure, mechanical and thermal properties of Ti1-xAlxN based coatings under the guidance of ab initio calculations. The preparation of Ti1-x-zAlxZrzN by magnetron sputtering verifies the suggested cubic (NaCl-type) structure for x below 0.6-0.7 and z ≤ 0.4. Increasing the Zr content from z = 0 to 0.17, while keeping x at ~ 0.5, results in a hardness increase from ~ 33 to 37 GPa, and a lattice parameter increase from 4.18 to 4.29 Å. The latter are in excellent agreement with ab initio data. Alloying with Zr also promotes the formation of cubic domains but retards the formation of stable wurtzite AlN during thermal annealing. This leads to high hardness values of ~ 40 GPa over a broad temperature range of 700-1100 °C for Ti0.40Al0.55Zr0.05N. Furthermore, Zr assists the formation of a dense oxide scale. After 20 h exposure in air at 950 °C, where Ti0.48Al0.52N is already completely oxidized, only a ~ 1 μm thin oxide scale is formed on top of the otherwise still intact ~ 2.5 μm thin film Ti0.40Al0.55Zr0.05N.  相似文献   

19.
The solid solution of pyrochlore oxides, Nd2ZrxTi2−xO7 (x = 0.2, 0.4, 0.6, 0.8 and 1.0) was synthesized by citrate gel method and the conventional ceramic method. The results indicate that the citrate gel method gives pyrochlore phase formation at a much lower temperature and better morphology of the product oxides as compared with the ceramic method. The dc conductivity study was carried out on some samples to understand the defects, if any, in the lattice of the solid solution Nd2TixZr2−xO7 (x = 0.2, 0.4, 0.6, 0.8 and 1.0) on substitution of Zr by Ti. The formation of defects in the lattice on substitution of Zr by Ti, was explained on the basis of XPS studies.  相似文献   

20.
Pb0.97La0.02(Zr0.95Ti0.05)O3 antiferroelectric thin films with thickness of 500 nm were successfully deposited on TiO2 buffered Pt(1 1 1)/Ti/SiO2/Si(1 0 0) and Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates via sol-gel process. Microstructure of Pb0.97La0.02(Zr0.95Ti0.05)O3 thin films was studied by X-ray diffraction analyses. The antiferroelectric nature of the Pb0.97La0.02(Zr0.95Ti0.05)O3 thin films was confirmed by the double hysteresis behaviors of polarization and double buffer fly response of dielectric constant versus applied voltage at room temperature. The capacitance-voltage behaviors of the Pb0.97La0.02(Zr0.95Ti0.05)O3 films with and without TiO2 buffer layer were studied, as a function of temperature. The temperature dependence of dielectric constant displayed a similar behavior and the Curie temperature (Tc) was 193 °C for films on both substrates. The current caused by the polarization and depolarization of polar in the Pb0.97La0.02(Zr0.95Ti0.05)O3 films was detected by current density-electric field measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号