首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
杨旖旎  冯前  李大纲 《包装工程》2019,40(1):100-105
目的以纳米纤维素/碳纤维复合膜为导电基底,制备纳米纤维素/碳纤维-聚苯胺/碳纳米管超级电容器电极。方法利用超声处理和真空抽滤制备纳米纤维素/碳纤维复合膜;利用原位聚合法制备聚苯胺和聚苯胺/碳纳米管复合材料;通过真空抽滤法制备纳米纤维素/碳纤维-聚苯胺电极和纳米纤维素/碳纤维-聚苯胺/碳纳米管电极。结果在纳米纤维素/碳纤维复合膜中,碳纤维形成了互穿导电网络结构,是良好的超级电容器电极导电基体;纳米纤维素/碳纤维-聚苯胺/碳纳米管电极具有良好的电化学性能,在扫描速率为5 mV/s的条件下,质量比电容为380.74 F/g,且在1000次循环测试后,电容保留率为88.05%。结论以纳米纤维素/碳纤维导电复合膜作为基体制备的纳米纤维素/碳纤维-聚苯胺/碳纳米管电极具有良好的电化学性能,可以作为超级电容器电极。  相似文献   

2.
The substrate pre-treatment plays a key role in obtaining hollow-cored carbon nanotubes (CNTs) and solidcored carbon nanofibers (CNFs) from flames. This paper introduces a simply and high-efficient process by coating a NiSO4 or FeSO4 layer on the substrate as catalyst precursors. Comparing with the regular pretreatment methods, the present experiments showed that the coating pre-treatment provided the following advantages: 1) greatly shortening the synthesis time; 2) available variant substrates and carbon sources; 3) narrowing the diameters distribution. The sulfate is considered to be a crucial factor at the growth of CNTs and CNFs, because it increases the surface energy of catalyst particles and the surface specificity of sulfurs action in metallic grains. This novel process provides a possibility for high quality and mass production of CNTs and CNFs from flames.  相似文献   

3.
The substrate pre-treatment plays a key role in obtaining hollow-cored carbon nanotubes (CNTs) and solid-cored carbon nanofibers (CNFs) from flames. This paper introduces a simply and high-efficient process by coating a NiSO4 or FeSO4 layer on the substrate as catalyst precursors. Comparing with the regular pre-treatment methods, the present experiments showed that the coating pre-treatment provided the following advantages: 1) greatly shortening the synthesis time; 2) available variant substrates and carbon sources; 3) narrowing the diameters distribution. The sulfate is considered to be a crucial factor at the growth of CNTs and CNFs, because it increases the surface energy of catalyst particles and the surface specificity of sulfurs action in metallic grains. This novel process provides a possibility for high quality and mass production of CNTs and CNFs from flames.  相似文献   

4.
Carbonaceous materials, one of the most important electrode materials for sea water desalination, have attracted tremendous attention. Herein, we develop a facile and effective two-step strategy to fabricate hierarchical porous carbon nanotubes/graphene/carbon nanofibers (CNTs/G/CNFs) composites for capacitive desalination application. Graphite oxide (GO), Ni2+, and Co2+ are introduced into polyacrylonitrile (PAN) nanofibers by electrospinning method. During the annealing process, the PAN nanofibers are carbonized into CNFs felt, while the CNTs grow in situ on the surface of CNFs and graphite oxide are reduced into graphene simultaneously. Benefiting from the unique hierarchical porous structure, the as-prepared CNTs/G/CNFs composites have a large specific surface area of 223.9 m2 g?1 and excellent electrical conductivity. The maximum salt capacity of the composites can reach to 36.0 mg g?1, and the adsorbing capability maintains a large retention of 96.9% after five cycles. Moreover, the effective deionization time of the CNTs/G/CNFs composites lasts more than 30 min, much better than the commercial carbon fibers (C-CFs) and graphene/carbon nanofibers (G/CNFs) composites. Results suggest that the designed hierarchical porous CNTs/G/CNFs architecture could enhance the capacitive desalination properties of electrode materials. And the possible adsorption mechanism of the novel electrode materials is proposed as well.  相似文献   

5.
Liyan Yu 《Materials Letters》2009,63(20):1677-1679
Carbon nanofibers (CNFs) and carbon nanotubes (CNTs) were synthesized at different temperatures by the catalytic pyrolysis of acetylene with iron nanoparticles prepared using a hydrogen-arc plasma method. The obtained carbon nanomaterials were characterized by transmission electron microscopy and field-emission scanning electron microscopy. An iron nanoparticle was always located at the tip of CNFs or CNTs, whose diameter was approximately identical with the diameter of the iron nanoparticle. The structures of the products were closely related to the reaction temperature, and could be changed from fibers to tubes by simply increasing the temperature. CNFs were obtained at the reaction temperature of 550-650 °C. When the reaction temperature was increased to 710-800 °C, CNTs were obtained.  相似文献   

6.
The self sensing properties of cementitious composites reinforced with well dispersed carbon nanotubes and carbon nanofibers were investigated. The electrical resistance of cementitious nanocomposites with w/c = 0.3 reinforced with well dispersed carbon nanotubes (CNTs) and nanofibers (CNFs) at an amount of 0.1 wt% and 0.3 wt% of cement was experimentally determined and compared with resistivity results of nanocomposites fabricated with “as received” nanoscale fibers at the same loading. Results indicate that conductivity measurements, besides being a valuable tool in evaluating the smart properties of the nanocomposites, may provide a good correlation between the resistivity values measured and the degree of dispersion of the material in the matrix. The addition of CNTs and CNFs at different loadings was proven to induce a decrease in electrical resistance, with the nanocomposites containing 0.1 wt% CNTs yielding better electrical properties. Furthermore, conductivity measurements under cyclic compressive loading provided an insight in the piezoresistive properties of selected nanocomposites. Results confirm that nanocomposites, reinforced with 0.1 wt% CNTs and CNFs, exhibited an increased change in resistivity, which is indicative of the amplified sensitivity of the material in strain sensing.  相似文献   

7.
It has been experimentally demonstrated that suspensions of carbon nanotubes (CNTs) and nanofibers (CNFs) significantly increase the thermal conductivity of nanofluids; however, a physically sound theory of the underlying phenomenon is still missing. In this study, the nonlinear nature of the effective thermal conductivity enhancement with the particle concentration of CNT and CNF nanofluids is explained physically using the excluded volume concept. Specifically, the number of contacting CNTs and CNFs could be calculated by using the excluded volume concept, where the distance for heat to travel in a cylinder between the contacting cylinders in the thermal network of percolating CNTs and CNFs increased with the excluded volume. In contrast to the effective thermal conductivity model of Sastry et al (2008 Nanotechnology 19 055704) the present revised model could reproduce the nonlinear increase of the thermal conductivity with particle concentration, as well as the dependence on the diameter and aspect ratio of the CNTs and CNFs. It was found that the alignment of CNTs and CNFs due to the long range repulsion force decreases the excluded volume, leading to both the convex and concave nonlinear as well as linear increase of the thermal conductivity with particle concentration. The difference between various carrier fluids of the suspensions could be explained as the result of the change in the excluded volume in different base fluids.  相似文献   

8.
基于制备碳/碳(C/C)复合材料的等温化学气相渗透(ICVI)技术,在1010~1100℃用Fe催化裂解工业天然气可在碳毡内原位合成出碳纳米管(CNTs).扫描电镜(SEM)观察结果表明,1060℃合成的CNTs具有较好的覆盖形貌和均匀管径(110~120nm)且纯净度高.高分辨率透射电镜(HRTEM)和Raman光谱测试结果进一步表明,该温度下合成的CNTs结晶度高,与碳纤维间结合力强.  相似文献   

9.
曹峰  杨涵  傅强  潘春旭 《新型炭材料》2005,20(3):261-269
以乙醇、甲醇及液化石油气为碳源,低碳钢及含Ni合金钢等为基板,采用火焰法成功地制备出了一维碳纳米材料,包括碳纳米管(CNTs)和一种新的“实心”碳纳米纤维(CNFs)。利用场发射枪高分辨扫描电镜(SEM)、透射电镜(TEM)和激光Raman光谱对碳纳米材料的结构进行了表征。发现基板材料决定燃烧生成物的性质,含Fe元素及其化合物的基板材料倾向于合成“实心”碳纳米纤维,而含Nj元素及其化合物的基板材料倾向于合成“空心”的碳纳米管,认为这是由于碳与Fe的亲和力比Ni大而造成的。不同碳源对一维碳纳米材料的形态也有影响,这与它们的含碳量和燃烧热等不同有关。  相似文献   

10.
State-of-the-art report on use of nano-materials in concrete   总被引:2,自引:0,他引:2  
Nanotechnology application to concrete presents an innovative approach to improve concrete properties based on the ability to manipulate the cementitious material at an atomic scale. This paper presents a review of the nano-materials that have been used in concrete. The literature survey revealed that four nano-materials are most often used to modify concrete properties; these include nano-silica (nano-SiO2), nano-titanium dioxide (nano-TiO2), carbon nano-tubes (CNTs) and carbon nano-fibres (CNFs). All of these four nano-materials have shown improvement in many concrete properties. Both nano-TiO2 and nano-SiO2 reduce bleeding and segregation, and improve mechanical and transport properties. CNFs and CNTs tend to adversely affect the fresh properties due to agglomerations, which are overcome when a surfactant or ultrasonic mixer is used. However, both CNFs and CNTs significantly improve the mechanical properties of concrete. This paper also discusses how concrete durability is improved when nano-materials are added to concrete. In addition, this paper identifies several research needs based on the gaps in the current state of knowledge on using nano-materials in concrete.  相似文献   

11.
Solid carbon nanofibers (CNFs), hollow CNFs, metal-filled carbon nanotubes (CNTs), and carbon onions were synthesized by chemical vapor deposition (CVD) using a novel Ni/Y catalyst supported on Cu at different reaction temperatures. XRD, TEM, and EDS analyses reveal that the structure of the catalyst changes with increasing reaction temperature. The evolution of Y doped in Ni directly influences the morphologies of the products. At relatively low temperature, Y is doped in Ni and causes CNF formation, and when the temperature is increased to above 650 °C, Y separates from Ni as yttria nanoparticles and carbon onions are synthesized. The catalyst evolution and carbon nanostructure growth mechanism are discussed in detail.  相似文献   

12.
We report pulsed-jet deposition of single-wall and double-wall carbon nanotubes (SWNTs and DWNTs; CNTs) onto a clean Cu(111) surface and their scanning tunneling microscopy (STM) observations under ultra-high vacuum (UHV). The clean Cu(111) surface prepared by a repeated Ar-sputtering and annealing is introduced into a load-lock chamber kept at a 10(-5)-Pa range vacuum, and the CNTs dispersed in a chloroform solution by ultrasonication are pulse-injected onto the surface. Since the substrate is annealed at 700 K to remove the residual solvent molecules, high resolution lattice images of the CNTs are successfully observed by STM. High-resolution chirality-resolved images of the two SWNTs with a metal cluster are also observed, supporting the well accepted growth mechanism of the CNTs from the metal-catalyst cluster. The present pulsed-jet deposition in high-vacuum is superior to the conventional spin-coating or drop-coating techniques for preparing clean and well-defined CNTs on clean surfaces for high-resolution and contamination-free UHV-STM observation.  相似文献   

13.
Sharma R  Chee SW  Herzing A  Miranda R  Rez P 《Nano letters》2011,11(6):2464-2471
In situ dynamic imaging, using an environmental transmission electron microscope, was employed to evaluate the catalytic activity of Au/SiO(2), Ni/SiO(2), and Au-Ni/SiO(2) nanoparticles for the formation of one-dimensional (1-D) carbon nanostructures such as carbon nanofibers (CNFs) and nanotubes (CNTs). While pure-Au thin-film samples were inactive for carbon deposition at 520 °C in 0.4 Pa of C(2)H(2), multiwalled CNTs formed from Ni thin films samples under these conditions. The number of nanoparticles active for CNF and CNT formation increased for thin films containing 0.1 mol fraction and 0.2 mol fraction of Au but decreased as the overall Au content in thin films was increased above 0.5 mol fraction. Multiwalled CNTs formed with a root growth mechanism for pure Ni samples, while with the addition of 0.1 mol fraction or 0.2 mol fraction of Au, CNFs were formed via a tip growth mechanism at 520 °C. Single-walled CNTs formed at temperatures above 600 °C in samples doped with less than 0.2 mol fraction of Au. Ex situ analysis via high-resolution scanning transmission electron microscopy (STEM) and energy-dispersive X-ray spectroscopy (EDS) revealed that catalytically active particles exhibit a heterogeneous distribution of Au and Ni, where only a small fraction of the overall Au content was found in the portion of each particle actively involved in the nucleation of graphitic layers. Instead, the majority of the Au was found to be segregated to an inactive capping structure at one the end of the particles. Using density-functional theory calculations, we show that the activation energy for bulk diffusion of carbon in Ni reduces from ≈1.62 eV for pure Ni to 0.07 eV with the addition of small amounts (≈0.06 mol fraction) of Au. This suggests that the enhancement of C diffusion through the bulk of the particles may be responsible for improving the number of particles active for nucleating the 1-D carbon nanostructures and thereby the yield.  相似文献   

14.
Micro-nano-composites of TiO2/carbon were synthesised using a collage of carbon nanostructures (carbon nanotubes (CNTs) and carbon nanofibers (CNFs)) on a TiO2 surface through a TiO2 sol-gel layer. C-CNT macroscopic shaping (C-CNT composites) were produced using CNTs as a starting material and a phenol-formaldehyde (PF) or polystyrene (PS) polymer as an adhesive. The morphologies of the composites were characterised by scanning electron microscopy (SEM). The collage of carbon nanostructures on the surface of TiO2 in the composite was observed by transmission electronic microscopy (TEM). The superhydrophobicity of the C-CNT macroscopic shapes was demonstrated by contact angle measurements using AutoCAD software. The photoactivity of the composites was examined by the conversion of methylene blue (MB) in aqueous solution under irradiation from high-pressure mercury lamp. Higher photoactivity was observed using the TiO2/carbon nanostructure composites than with TiO2 alone.  相似文献   

15.
Understanding and controlling the chemical reactivity of carbon nanotubes (CNTs) is a fundamental requisite to prepare novel nanoscopic structures with practical uses in materials applications. Here, we present a comprehensive microscopic and spectroscopic characterization of carbon nanotubes which have been chemically modified. Specifically, scanning tunneling microscopy (STM) investigations of short-oxidized single-walled carbon nanotubes (SWNTs) functionalized with aliphatic chains via amide reaction reveal the presence of bright lumps both on the sidewalls and at the tips. The functionalization pattern is consistent with the oxidation reaction which mainly occurs at the nanotube tips. Thermogravimetric analysis (TGA), steady-state electronic absorption (UV-vis-NIR), and Raman spectroscopic studies confirm the STM observations.  相似文献   

16.
含碳耐火材料不仅热导率较高,具有较好的抗热冲击性能,而且与熔渣不润湿,具有良好的抗侵蚀性能,因此大量生产并在冶金工业中广泛应用。酚醛树脂因具有与石墨润湿、残碳率高、环境友好、结合强度较高的特点而广泛用作含碳耐火材料结合剂。然而,酚醛树脂热解碳为脆性的非晶结构,不仅在应力作用下易脆性断裂,而且在高温下容易氧化。很多研究致力于酚醛树脂的化学改性。为提高酚醛热解碳的抗氧化性能或力学性能,提高酚醛树脂残碳率,通常添加过渡金属化合物、纳米碳、半导体陶瓷作为催化剂以提高热解碳的有序度,或者在其酚醛树脂热解碳基体中生成具有较高石墨化度的碳纳米管、碳纳米纤维以及Si C纳米线。  相似文献   

17.
The temperature effect on synthesizing different carbon nanostructures in the range of 820−1020 °C by sulfur-assisted chemical vapor deposition is investigated. When the growth temperature is no more than 900 °C (e.g. 820, 860, and 900 °C), carbon onions can be obtained, accompanying with some fishbone-like carbon nanofibers (CNFs), graphite sheet and carbon nanotubes (CNTs). When the growth temperature is increased to 940 °C or above (e.g. 980 and 1020 °C), the products are mainly CNTs. Furthermore, by comparing the nitrogen adsorption-desorption results of samples obtained with and without sulfur addition at each temperature, it is found that the specific surface area (SSA) of products can be remarkably enlarged after introducing small amount of sulfur during growth. This is favorable to their applications in areas like electrodes of supercapacitors, adsorbents, catalyst supports, and so on.  相似文献   

18.
Xing H  Sun L  Song G  Gou J  Hao YW 《Nanotechnology》2008,19(2):025704
Carbon nanomaterials in the form of paper sheets have been used as platforms to achieve multifunctionality. Combined with electrochemical deposition, room temperature synthesis of magnetic Ni coatings on individual carbon nanofibers (CNF) and/or carbon nanotubes (CNT) has been realized through solution penetration and ion diffusion. In addition to significant electrical conductivity improvement, the magnetic responses of the Ni coated carbon nanopaper sheets can be tuned within large ranges in terms of saturation magnetic field, remnant magnetization and coercivity. After being re-suspended in liquids, the magnetized CNFs/CNTs can be aligned with small external magnetic fields.  相似文献   

19.
The growth of carbon nanofibers (CNFs) using C60, graphite-carbon and boron powders via the ultrasonic spray pyrolysis method of ethanol is reported. CNFs of various morphologies were observed with different powders. Kinked CNFs of about 100 nm were produced while using a mixture of C60 particles and ethanol as precursors, whereas straight CNFs were obtained using graphite-carbon and boron powders as catalysts. Element analysis measurement of the as-produced CNFs shows that the CNFs synthesized using C60 and graphite powder have the carbon particles on the tip. When boron powders were added in ethanol, boron related materials were examined at the tip of the CNFs. The present study indicates that the clusters composed of carbon and boron related materials act as nucleating sites for CNF formation.  相似文献   

20.
Herein, 3D nanohybrid architectures consisting of MnOx nanocrystals, carbon nanofibers (CNFs), and graphene sheets are fabricated. MnOx‐decorated CNFs (MCNFs) with diameters of about 50 nm are readily obtained via single‐nozzle co‐electrospinning, followed by heat treatment. The MCNFs are then intercalated between graphene sheets, yielding the ternary nanohybrid MCNF/reduced graphene oxide (RGO). This straightforward synthesis process readily affords product on a scale of tens of grams. The ultrathin CNFs, which might be a promising alternative to carbon nanotubes (CNTs), overcome the low electrical conductivity of the excellent pseudocapacitive component, MnOx. Furthermore, the graphene sheets separated by the MCNFs boost the electrochemical performance of the nanohybrid electrodes. These nanohybrid electrodes exhibit enhanced specific capacitances compared with a sheet electrode fabricated of MCNF‐only or RGO‐only. Evidently, the RGO sheet acts as a conductive channel inside the nanohybrid, while the intercalated MCNFs increase the efficiency of the ion and charge transfer in the nanohybrid. The proposed nanohybrid architectures are expected to lay the foundation for the design and fabrication of high‐performance electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号