首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In situ Al3Ti/Al–5.5Cu composites fabricated by powder metallurgy and subsequent forging were subjected to multiple pass friction stir processing (FSP) with and without active cooling. The forged sample exhibited lower strength and ductility due to the presence of coarse Al3Ti clusters with a size range of 50–100 μm and coarse matrix grains. Four-pass FSP in air resulted in the refinement and redistribution of the Al3Ti clusters, and the generation of micron matrix grains, thereby increasing the strength and ductility of the composites. Furthermore, coarse Al2Cu particles dissolved and re-precipitated due to a relatively long duration of thermal exposure. Additional two pass FSP with rapid water cooling (FSP-water) dissolved most of the Al2Cu into the matrix and retained the solutes in solution due to the short duration of thermal exposure. Meanwhile, ultrafine matrix grains with a high density of dislocations were obtained. These microstructural changes led to significant increase in strength and a decrease in ductility in the FSP-water sample. After aging, the FSP-water sample exhibited further increased yield strength and ultimate tensile strength due to the precipitation of metastable Al2Cu phases. However, the ductility did not decrease due to the decrease of dislocation density after aging.  相似文献   

2.
Al and TiO2 powders were selected to fabricate in situ Al composites via multiple pass friction stir processing (FSP) based on the thermodynamic analysis. The microstructural investigations indicated FSP would induce reaction between Al and TiO2. Al3Ti and Al2O3 particles were formed after 4 pass FSP with 100% overlapping. The in situ particles were about 80 nm in size at various FSP conditions, and ultrafine matrix grains 602 nm in size were obtained when water cooling was applied during FSP. Tensile tests indicated that the in situ nanocomposites exhibited pronounced work hardening behavior and a good combination of strength and ductility.  相似文献   

3.
Aluminum rich intermetallic particles are potential reinforcements for discontinuously reinforced aluminum matrix composites (DRAMCs). The objective of the present work is to produce AA6061/Al3Ti and AA6061/Al3Zr composites using in situ casting technique and applying friction stir processing (FSP) to enhance the distribution and morphology of Al3Ti and Al3Zr particles. AA6061/Al3Ti and AA6061/Al3Zr DRAMCs were produced by the in situ reaction of inorganic salts K2TiF6 and K2ZrF6 with molten aluminum. The microstructure was observed using optical and scanning electron microscopy. AA6061/Al3Ti DRAMC exhibited clusters of Al3Ti particles while the segregation of needle shape Al3Zr particles was observed in AA6061/Al3Zr DRAMC. The prepared composites were subjected to FSP. Significant changes in the distribution and morphology of Al3Ti and Al3Zr particles were observed after FSP. The changes in microhardness and sliding wear behavior of AA6061/Al3Ti and AA6061/Al3Zr DRAMCs before and after FSP is detailed in this paper.  相似文献   

4.
In the present study, friction stir processing (FSP) was used for the incorporation of Ni particles into the surface of an A413 alloy to fabricate a surface composite. FSP parameters were the rotation speed of 2000 rpm, the traverse speed of 8 mm/min and the tilt angle of 2°. Single pass and three-pass FSP were conducted on the samples. For the evaluation of microstructures, optical microscopy and scanning electron microscope were utilized. Also, for the investigation of intermetallic formation, energy dispersive spectroscopy was used. The wear resistance of different composites was investigated at ambient and elevated temperatures. Microstructural observations revealed that the FSP led to significant breakup of acicular Si particles, elimination of α­Al dendrites and heal the casting porosity. It was found that the hardness and wear behavior of A413 cast alloy were strongly influenced by applying FSP. Also, the in situ formation of Al3Ni particles during FSP was a critical factor controlling the wear mechanism. Sliding wear tests revealed that the increase in the number of passes created a homogeneous distribution of Al3Ni intermetallic particles and thereby resulting in a significant improvement in wear resistance at both room and high temperatures.  相似文献   

5.
In situ Al3Ti/Al composites were fabricated by a combination of vacuum hot pressing (VHP) and friction stir processing (FSP). The formation mechanism of the Al3Ti and the effect of VHP and FSP parameters on the resultant microstructure and mechanical properties were investigated. The Al3Ti formed due to the reactive diffusion between Al and Ti during VHP, and the number of Al3Ti particles increased with increasing the temperature and holding time of the VHP. FSP not only induced the Al–Ti reaction, but also resulted in significant refining of the Al3Ti, thereby creating a homogeneous distribution of Al3Ti particles in the Al matrix. These microstructural changes led to significant improvement in the tensile properties of the in situ Al3Ti/Al composite. However, the change trends of the tensile properties of the FSP samples were dependent on the extent of the Al–Ti reaction during VHP.  相似文献   

6.
Aluminium composites containing Al2O3 fibres and precipitates of various intermetallic phases are investigated by high-resolution computerized microtomography. Individual fibres 15 μm in diameter and intermetallic phases forming a network with about 15 μm mesh size have been imaged. The capabilities of the method and its further development down 1 μm and less spatial resolution are discussed.  相似文献   

7.
The intermetallic compound NiAl has excellent potential for high temperature structural applications but suffers from low temperature brittleness and insufficient high temperature strength. One way to remove these deficiencies is the reinforcement by high strength ceramic fibers. Such intermetallic matrix composites can be conveniently fabricated by the hot pressing of matrix coated fibers. Al2O3 single crystal fibers show excellent chemical stability with the NiAl matrix, but the residual thermal compressive stresses during cool down dramatically degrades the fiber strength and thus, renders the composite useless for structural applications. We report on an experimental and computational study to mitigate this problem and to fabricate Al2O3/NiAl composites with sufficient high temperature strength. Analytical TEM, mechanical testing and push-out tests were employed to characterize chemistry, microstructure and mechanical properties of the composites. It will be shown that a processing window exists that allows producing intermetallic matrix composites with promising mechanical properties.  相似文献   

8.
《Advanced Powder Technology》2014,25(4):1362-1368
Mechanically alloyed nanocrystalline Al63Ni37 powder with a metastable structure of NiAl phase was mixed with 20, 30 and 40 vol.% of Al powder. The powder mixtures as well as pure powder of Al63Ni37 alloy were consolidated at 600 °C under the pressure of 7.7 GPa. The bulk materials were characterised by structural investigations (X-ray diffraction, light and scanning electron microscopy, energy dispersive spectroscopy), compression and hardness tests and measurements of density and open porosity. During the consolidation, the metastable NiAl phase transformed into the equilibrium Al3Ni2 intermetallic. The mean crystallite size of the Al3Ni2 intermetallic in the bulk materials is below 40 nm. The microstructure of the composite samples consists of Al3Ni2 intermetallic areas surrounded by lamellae-like Al regions. The hardness of the produced Al3Ni2–Al composites is in the range of 5–6.5 GPa (514–663 HV1), while that of the Al3Ni2 intermetallic is 9.18 GPa (936 HV1). The compressive strength of the composites increases with the decrease of Al content, ranging from 567 MPa to 876 MPa. The plastic elongation of the composites was increasing with the increase of Al content, while the Al3Ni2 intermetallic failed in the elastic region.  相似文献   

9.
Reactive metal penetration was used to prepare intermetallic–ceramic composites with co-continuous structure, starting from silica glass preforms. Two subsequent metal penetrations were performed: first, the silica was immersed in a liquid Al bath, obtaining an Al(Si)/Al2O3 composite, then Ni was put in contact with the composite at high temperature, bringing to the substitution of Al with a Ni–Al intermetallic. The obtained composites present both phases continuous, and the whole process is a near net-shape one. The intermetallic phase is based on the Ni–Al system, with small Si content (lower than 2%) and its composition ranges from Al3Ni2 to a mixture of NiAl and Ni3Al depending on the Ni content during the second penetration step.The composites present high hardness and melting point, low thermal expansion coefficient and good mechanical properties.  相似文献   

10.
Reaction-sintered hot-pressed TiAl   总被引:1,自引:0,他引:1  
Titanium aluminide intermetallic alloys and composites were formed from elemental titanium and aluminium powders by self propagating, high-temperature synthesis in an induction-heated hot-press. The crystal phases, density, transverse rupture stress, and hardness of the reaction-sintered compacts, were observed to be controlled by hot-pressing conditions. The principal phase formed was TiAl together with a significant second-phase concentration of Ti3AI. The transverse rupture strength (TRS) of the intermetallic composites was observed to vary directly with compact density. Under selected high-temperature synthesis hot-pressing conditions, TRS values were comparable to those obtained for fully dense TiAl. Titanium aluminide composites were formed by adding boron, carbon, silicon and Al2O3, and SiC powders and whiskers to the Ti-Al powders before reaction sintering. Changing the alloying additions did not have as strong an effect on properties of the composite compacts as did varying hot-pressing conditions.  相似文献   

11.
In this research, microstructure and mechanical properties of 5052Al/Al2O3 surface composite fabricated by friction stir processing (FSP) and effect of different FSP pass on these properties were investigated. Two series of samples with and without powder were friction stir processed by one to four passes. Tensile test was used to evaluate mechanical properties of the composites and FSP zones. Also, microstructural observations were carried out using optical and scanning electron microscopes. Results showed that grain size of the stir zone decreased with increasing of FSP pass and the composite fabricated by four passes had submicron mean grain size. Also, increase in the FSP pass caused uniform distribution of Al2O3 particles in the matrix and fabrication of nano-composite after four passes with mean cluster size of 70 nm. Tensile test results indicated that tensile and yield strengths were higher and elongation was lower for composites fabricated by three and four passes in comparison to the friction stir processed materials produced without powder in the similar conditions and all FSP samples had higher elongation than base metal. In the best conditions, tensile strength and elongation of base material improved to 118% and 165% in composite fabricated by four passes respectively.  相似文献   

12.
3-3 Interpenetrating composites, consisting of 3-dimensionally interpenetrating matrices of two different phases, are interesting materials with potentially superior properties when compared with traditional metal matrix composites. In the present research, gel-cast Al2O3 foams with open porosity in the form of spherical cells connected by circular windows were pressurelessly infiltrated using an Al-8 wt% Mg alloy. Electron backscatter diffraction (EBSD) analysis revealed that the alloy had a large grain size with single grains generally inhabiting multiple cells. The flexural strength of the composites, tested using 3-point bending, was ~350 MPa, rather high when compared to other Al-alloy-based Al2O3 composites. The strength increased with both decreasing foam density and cell size. The reasons for the high strength are good metal–ceramic interfacial bonding, crack bridging by plastic deformation of the metal phase and crack deflection.  相似文献   

13.
In situ composites of TiAl reinforced with Al2O3 particles are successfully synthesized from an elemental powder mixture of Ti, Al and Nb2O5 by the hot-press-assisted reaction synthesis (HPRS) method. The as-prepared composites are mainly composed of TiAl, Al2O3, NbAl3, as well as small amounts of the Ti3Al phase. The in situ formed fine Al2O3 particles tend to disperse on the matrix grain boundaries of TiAl resulting in an excellent combination of matrix grain refinement and uniform Al2O3 distribution in the composites. The Rockwell hardness and densities of TiAl based composites increase gradually with increasing Nb2O5 content, and the flexural strength and fracture toughness of the composites have the maximum values of 634 MPa and 9.78 MPa m1/2, respectively, when the Nb2O5 content reaches 6.62 wt.%. The strengthening mechanism was also discussed.  相似文献   

14.
M40 graphite fibre reinforced Al-17Mg matrix composites with different neodymium (Nd) content (Al-17Mg, Al-17Mg-0.2Nd, Al-17Mg-0.5Nd and Al-17Mg-2Nd) were fabricated by pressure infiltration method. Microstructure of Grf/Al composites was investigated by XRD, SEM, TEM and HRTEM. Effect of Nd on microstructure and mechanical properties of Grf/Al composites were deeply discussed. Al3Mg2 and Al11Nd3 phases followed by segregation of Nd and Mg at carbon-aluminum interface were detected in composites containing Nd. The size and amount of Al4C3 phase were increased with Nd content. Bending strength of Grf/Al composites were decreased sharply from 1463 MPa (Grf/Al-17Mg) to 791 MPa (Grf/Al-17Mg-2Nd) after the addition of Nd. The increased Nd content decreased the pull-out of single fibre and bundles, which was due to the high interfacial bonding strength with formation of Al4C3, Al3Mg2, Al11Nd3 phases and the transition layer.  相似文献   

15.
In this study, friction stir processing (FSP) was employed to modify cold-sprayed (CSed) AA2024/Al2O3 metal matrix composites (MMCs). Three different rotation speeds with a constant traverse speed were used for FSP. Microstructural analysis of the FSPed specimens reveals significant Al2O3 particle refinement and improved particle distribution over the as-sprayed deposits. After FSP, a microstructural and mechanical gradient MMC through the thickness direction was obtained. Therefore, a hybrid technique combining these two solid-state processes, i.e. CS and FSP, was proposed to produce functionally gradient deposits. The Guinier-Preston-Bagaryatskii zone was dissolved during FSP, while the amounts at different rotation speeds were approximately the same, which is possibly due to the excellent thermal conductivity of the used Cu substrate. Mechanical property tests confirm that FSP can effectively improve the tensile performance and Vickers hardness of CSed AA2024/Al2O3 MMCs. The properties can be further enhanced with a larger rotation speed with a maximum increase of 25.9% in ultimate tensile strength and 27.4% in elongation at 1500 rpm. Friction tests show that FSP decreases the wear resistance of CSed MMCs deposits due to the breakup of Al2O3 particles. The average values and fluctuations of friction coefficients at different rotation speeds vary significantly.  相似文献   

16.
Growth kinetics of binary intermetallic compounds in the fibre/matrix interface has been studied in stainless steel fibre reinforced aluminium matrix composites fabricated by the P/M hot pressing, squeeze casting, and infiltration techniques. As expected in most binary diffusion couples, more than one intermetallic compound of the type FexAly forms at the interface. However, not all the iron-aluminide intermetallic compounds possible as dictated by the binary phase diagram are present. This is primarily the result of the non-equilibrium conditions at the interphase boundaries as the activation-controlled and diffusion-controlled interfacial reactions progress between the fibre and the matrix. Two equations have been established for the growth kinetics of the interface; one relates to hot pressing, the other to squeeze casting and infiltration. Parabolic rate constants have been determined. A rate constant of about 0.7 × 10–16 m2 sec–1 for hot-pressed composites produces an optimum thickness of the interface of about 3 m and results in the maximum strength of the composites. In addition to the FeAl and Fe2Al5 that form at the interface, the presence of NiAl3 intermetallic compound is also predicted. Further investigation is suggested for the determination of the rate constants in squeeze-cast and infiltrated composites.  相似文献   

17.
Commercially pure Al base short steel fiber reinforced composites were prepared by stir casting method and poured into a cast iron mould. Steel fibers were coated with copper and nickel by electroless deposition method. The density, hardness and strength of composites increased as compared to matrix alloy. The mechanical properties of these composites were measured and the results were correlated with the microstructure observation. It was found that copper-coated short steel fiber reinforced composites show considerable improvement in strength with good ductility because copper form a good interface between Al matrix and short steel fiber. Nickel-coated steel fiber reinforced composites showed improvement in strength to a lower extent possibly because of formation of intermetallic compound at the interface. The improvement in strength with uncoated fibers and nickel-coated fibers is on the lower side because of formation of brittle intermetallic compounds like Fe2Al5 and FeAl3. Fracture surface of tensile specimen was examined under SEM, which revealed a ductile fracture. Copper coating on steel fiber improved the strength properties while retaining a high level of ductility due to better interface bonding.  相似文献   

18.
The correlation between the microstructure and mechanical behavior during tensile loading of Ti68.8Nb13.6Al6.5Cu6Ni5.1 and Ti71.8Nb14.1Al6.7Cu4Ni3.4 alloys was investigated. The present alloys were prepared by the non-equilibrium processing applying relatively high cooling rates. The microstructure consists of a dendritic bcc β-Ti solid solution and fine intermetallic precipitates in the interdendritic region. The volume fraction of the intermetallic phases decreases significantly with slightly decreasing the Cu and Ni content. Consequently, the fracture mechanism in tension changes from cleavage to shear. This in turn strongly enhances the ductility of the alloy and as a result Ti71.8Nb14.1Al6.7Cu4Ni3.4 demonstrates a significant tensile ductility of about 14% combined with the high yield strength of above 820 MPa already in the as-cast state. The results demonstrate that the control of precipitates can significantly enhance the ductility and yet maintaining the high strength and the low Young's modulus of these alloys. The achieved high bio performance (ratio of strength to Young's modulus) is comparable (or even superior) with that of the recently developed Ti-based biomedical alloys.  相似文献   

19.
Friction stir processing (FSP) has evolved as a novel solid state method to prepare surface composites. In this work, FSP technique has been successfully applied to prepare copper surface composites reinforced with variety of ceramic particles such as SiC, TiC, B4C, WC and Al2O3. Empirical relationships are developed to predict the effect of FSP parameters on the properties of copper surface composites such as the area of the surface composite, microhardness and wear rate. A central composite rotatable design consisting of four factors and five levels is used to minimize the number of experiments. The factors considered are tool rotational speed, traverse speed, groove width and type of ceramic particle. The effect of those factors on the properties of copper surface composites is analyzed using the developed empirical relationships and explained in this paper taking into account the microstructural characterization of the prepared copper surface composites. B4C reinforced composites have higher microhardness and lower wear rate.  相似文献   

20.
Friction stir processing (FSP) has been used to produce metal matrix composites by incorporating reinforcement particles in an AA6061-T6 matrix. Two types of particles (Al2O3 and SiC) were tested. Powder was placed into a mechanized square section groove on a plate surface and then sealed before FSP. This study investigates the effect of several strategies for reinforcement (number and direction of FSP passes) on the wear resistance behavior of friction stir-processed Al-SiC/Al2O3 composites. The distribution and size of the particles in the friction stir-processed zone were studied by optical and scanning electron microscopy. Ball-on-disk test was performed on both base material and surface metal matrix composites (SMMCs), and both friction coefficient and specific wear rate (SWR) were correlated with particle distribution and metallurgical effects on the metallic matrix. For all strategies and for both types of reinforcing particles used in this study, the friction coefficient decreases with respect to the base material. Moreover, the SWR is reduced for the conditions of one single FSP pass and two passes with opposite directions, when SiC are used. However, this positive effect has not been detected with Al2O3. Wear mechanisms in base metal and in SMMCs are compared and discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号