首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A lithium bismuth phosphate, Li2Bi14.67(PO4)6O14, has been synthesized for the first time by the solid-state method. The crystal structure was determined by single crystal X-ray diffraction at 150 K. Li2Bi14.67(PO4)6O14 crystallizes in the monoclinic system C2/c (No. 15), with a = 30.8189(4) Å, b = 5.2691(3) Å, c = 24.5302(3) Å, β = 122.84(2)°, V = 3346.81(1) Å3 and Z = 2. The structure along the b axis consists of layers of [Bi2O2] units as the basic building block. These are separated by isolated PO4 and LiO4 tetrahedra. The oxygen co-ordination around two of the phosphorus atoms is disordered. Solid-state 7Li NMR studies confirm the presence of lithium in the structure. The material shows ionic conductivity of the order of 10−5 S cm−1 at 600 °C.  相似文献   

2.
The crystal structure of Ca0.28Ba0.72Nb2O6 (CBN-28) crystal with Nd-doping has been determined from X-ray single crystal diffraction data, in the tetragonal system with space group P4bm and the following parameters: a = b = 12.458 Å, c = 3.954 Å, V = 613.688 Å3, and Z = 5. X-ray diffraction results on a Nd-doped CBN-28 single crystal also have demonstrated that Nd3+ and Ca2+ occupy the same site in the crystal structure. Dielectric and ferroelectric measurements have been performed. Transition from ferroelectric to paraelectric at around 223 °C has been observed. The Nd-doped crystal has a lower Curie temperature (Tm) than that of undoped CBN-28 crystal. The spontaneous polarization (Ps) and coercive electric field (Ec) also decrease compared with their values in the undoped CBN-28 crystal.  相似文献   

3.
Crystal structure and ionic conductivity of ruthenium diphosphates, ARu2(P2O7)2 A=Li, Na, and Ag, were investigated. The structure of the Ag compound was determined by single crystal X-ray diffraction techniques. It crystallized in the triclinic space group P−1 with a=4.759(2) Å, b=6.843(2) Å, c=8.063(1) Å, α=90.44(2)°, β=92.80(2)°, γ=104.88(2)°, V=253.4(1) Å3. The host structure of it was composed of RuO6 and P2O7 groups and formed tunnels running along the a-axis, in which Ag+ ions were situated. The ionic conductivities have been measured on pellets of the polycrystalline powders. The Li and Ag compounds showed the conductivities of 1.0×10−4 and 3.5×10−5 S cm−1 at 150 °C, respectively. Magnetic susceptibility measurement of the Ag compound showed that it did not obey the Curie-Weiss law and the effective magnetic moment decreased as temperature decreased due to the large spin-orbital coupling effect of Ru4+ ions.  相似文献   

4.
Chemical preparation, crystal structure, calorimetric and spectroscopic investigations (IR and RMN) are given for a new non-centrosymmetric organic-cation dihydrogen phosphate-arsenate [H2(C4H10N2)][H2(As, P)O4]2. This compound is triclinic P1 with the following unit-cell parameters: a = 7.082(2) Å, b = 7.796(1) Å, c = 12.05(3) Å, α = 95.37(2)°, β = 98.38(3)°, γ = 62.98(1)°, Z = 2, V = 586.2(1) Å3 and Dx = 1.836 g cm−3. The crystal structure has been solved and refined to R = 0.03 using 2328 independent reflections. The structure can be described as infinite (H2XO)n chains spreading parallel to the b direction. These chains are themselves interconnected by a set of NH?O hydrogen bonds generated by the organic entities, alternating with the chains. Solid-state 13C, 15N and 31P MAS NMR spectroscopies are in agreement with the X-ray structure.  相似文献   

5.
The chemical preparation and crystal structure are given for a new organic-cation cyclotetraphosphate. This compound is triclinic P-1 with the following unit cell parameters: a=7.857(1) Å, b=8.877(2) Å, c=17.271(3) Å, α=93.94(1)°, β=101.75(2)°, γ=103.72(1)° V=1137.0(4) Å3, Z=1 and ρcal=1.467 g cm−3. The crystal structure has been determined and refined to R=0.037, using 6291 independent reflections. The atomic arrangement can be described by inorganic layers parallel to the (0 0 1) planes, between which the organic entities are located.  相似文献   

6.
The crystal structure behavior of the Sr2GdRuO6 complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K ≤ T ≤ 1273 K. Measurements of X-ray diffraction at room-temperature and Rietveld analysis of the experimental patterns show that this compound crystallizes in a monoclinic perovskite-like structure, which belongs to the P21/n (#14) space group and 1:1 ordered arrangement of Ru5+ and Gd3+ cations over the six-coordinate M sites. Experimental lattice parameters were obtained to be a =5.8103(5) Å, b =5.8234(1) Å, c =8.2193(9) Å, V = 278.11(2) Å3 and angle β = 90.310(5)°. The high-temperature analysis shows the occurrence of two-phase transitions on this material. First, at 573 K it adopts a monoclinic perovskite-type structure with I2/m (#12) space group with lattice parameters a = 5.8275(6) Å, b = 5.8326(3) Å, c = 8.2449(2) Å, V = 280.31(3) Å3 and angle β = 90.251(3)°. Close to 1273 K it undergoes a complete phase-transition from monoclinic I2/m (#12) to tetragonal I4/m (#87), with lattice parameters a = 5.8726(1) Å, c = 8.3051(4) Å, V = 286.39(8) Å3 and angle β = 90.0°. The high-temperature phase transition from monoclinic I2/m (#12) to tetragonal I4/m (#87) is characterized by strongly anisotropic displacements of the anions.  相似文献   

7.
Synthesis, crystal structure, vibrational study, 13C, 111Cd CP-MAS-NMR analysis and electrical properties of the compound [N(C3H7)4]2Cd2Cl6, are reported. The latter crystallizes in the triclinic system (space group , Z = 2) with the following unit cell dimensions: a = 9.530(1) Å, b = 11.744(1) Å, c = 17.433(1) Å, α = 79.31(1)°, β = 84.00(1)° and γ = 80.32(1)°. Besides, its structure was solved using 6445 independent reflections down to R = 0.037. The atomic arrangement can be described by alternating organic and inorganic layers parallel to the plan, made up of tetrapropylammonium groups and Cd2Cl6 dimers, respectively. In crystal structure, the inorganic layer, built up by Cd2Cl6 dimers, is connected to the organic ones through van der Waals interaction in order to build cation-anion-cation cohesion. Impedance spectroscopy study, reported in the sample, reveals that the conduction in the material is due to a hopping process. The temperature and frequency dependence of dielectric constants of the single crystal sample has been investigated to determine some related parameters to the dielectric relaxation.  相似文献   

8.
Calcium barium niobate Ca0.28Ba0.72Nb2O6 (CBN-28) crystals were successfully grown by the Czochralski method. X-ray powder diffraction experiments indicated that CBN single crystals are tetragonal with a = 12.432(±0.002) Å and c = 3.957(±0.001) Å, which have almost the same structure as the Sr0.50Ba0.50Nb2O6 (SBN-50) crystal. The thermal expansion coefficient perpendicular to Z-direction had been measured to be 1.25 × 10−5 K−1 between 293.15 and 572.15 K, and along Z-axis was negative between 298.15 and 543.15 K. The specific heat of the crystal had been measured by the differential scanning calorimetric experiments. The transmittance spectra from 200 to 3200 nm were also measured. The measured temperature dependence of dielectric constants showed that the Curie temperature of the CBN-28 crystals is 260 °C, which is about 200 °C higher than that of the (SBN) crystal.  相似文献   

9.
The double perovskite Mn2FeSbO6 has been synthesized under pressure 6 GPa and temperature 1000 °C. The crystal structure refinement of Mn2FeSbO6 was carried out with the GSAS program suite using X-ray diffraction data. XRD pattern of Mn2FeSbO6 was indexed with a monoclinic unit cell (space group P21/n) with parameters: a = 5.2431(3) Å, b = 5.3935(3) Å, c = 7.6358(5) Å, β = 89.693(2)°, V = 215.927 Å3, Z = 2. It found that Fe and Sb atoms are completely ordered in 2d and 2c positions of double perovskite structure respectively. According to XPS measurements, manganese in this compound is present as Mn2+, whiles the iron - as Fe3+. Magnetization measurements revealed the presence about 3 mass% of ferromagnetic impurity in the sample. Dependence of AC susceptibility χ″ from temperature showed that magnetic properties compound are determined probably by transformation in antiferromagnetic state below 19.5 K.  相似文献   

10.
A chlorozincophosphate of the composition Zn(HPO4)Cl·[C4H10NO] has been synthesised under mild condition water medium in the presence of morpholine as organic template. Its unit cell is monoclinic P21/a with parameters a = 8.655(6) Å, b = 9.302(5) Å, c = 12.180(5) Å, β = 101.10(4)°, Z = 4 and V = 962.1(9) Å3. The structure was determinated by single crystal X-ray diffraction. The structure involves a network of ZnO3Cl and PO3(OH) tetrahedra forming macroanionic inorganic layers with four- and eight-membered rings. Charge balance is achieved by the protonated amine which is trapped in the interlayers space and interacts with the organic framework through hydrogen bonding. Solid state 31P and 13C MAS-NMR spectroscopies are in agreement with the X-ray structure.  相似文献   

11.
Crystals of a new organic compound, the isonicotinic acid hydrazide dihydrogendiphosphate, (C6H9N3O)H2P2O7 (denoted INHDP) were prepared and grown at room temperature. The INHDP crystallizes in the triclinic system with the space group. Its unit cell dimensions are: a = 7.316(3) Å, b = 7.783(3) Å, c = 10.802(4) Å, α = 82.41(3)°, β = 75.19(3)°, γ = 72.57(3)°, with V = 566.3(4) Å3 and Z = 2. Crystal structure has been determined and refined to a reliability R factor of 0.0389. The atomic arrangement can be described as inorganic infinite ribbons of H2P2O72− anions spreading parallel to the b-axis. These ribbons are themselves interconnected by the organic (C6H9N3O)+ cations so as to build a three dimensional arrangement. In the present work, we describe the crystal structure, thermal behaviour and IR analysis of this new compound.  相似文献   

12.
New lithium copper(II) pyrophosphate, Li2CuP2O7 crystals were synthesized by the hydrothermal technique at moderate temperature and pressure conditions. The as-synthesized compound was characterized by DTA/TGA, infrared radiation, single crystal XRD and magnetic susceptibility measurement. The compound has crystallized in monoclinic system with C2/c space group and cell parameters a = 15.3360(14) Å, b = 4.8733(13) Å, β = 114.8(1)°, V = 585.2(2) Å, having tunnel type of cavities in the structure. Thermal behaviour and structural coordination of the prepared materials were investigated, respectively, using DTA/TGA and FTIR measurements. Magnetic results have revealed; it is a frequency and temperature dependent prospective paramagnetic materials.  相似文献   

13.
Single crystals of a new tin titanate containing Sn2+, Sn2TiO4 was prepared by high temperature reaction in an evacuated quartz tube and its crystal structure was determined by single crystal X-ray diffraction data. The tin titanate crystallizes in the tetragonal space group P42/mbc with = 8.490(2) and = 5.923(3) Å, Z = 4 and the final R factors are R = 0.0497 and Rw = 0.0676 for 354 unique reflections. This tin titanate is isostructural with the low temperature form of Pb3O4(Pb22+Pb4+O4). This compound was oxidized above 600 °C accompanying the mass gain and finally changed to rutile-type solid solution (Sn,Ti)O2.  相似文献   

14.
A new inorganic-organic hybrid material based on polyoxometallate, [L-C2H6NO2]3[(PO4)Mo12O36]·5H2O, has been successfully synthesized and characterized by single-crystal X-ray analysis, elemental analysis, infrared and ultraviolet spectroscopy, proton nuclear magnetic resonance and differential thermal analysis techniques. The title compound crystallizes in the monoclinic space group, P21/c, with a = 12.4938 (8) Å, b = 19.9326 (12) Å, c = 17.9270 (11) Å, β = 102.129 (1)°, V = 4364.8 (5) Å3, Z = 4 and R1(wR2) = 0.0513, 0.0877. The most remarkable structural feature of this hybrid can be described as two-dimensional inorganic infinite plane-like (2D/∞ [(PO4)Mo12O36]3−) which forming via weak Van der Waals interactions along the z axis. The characteristic band of the Keggin anion [(PO4)Mo12O36]3− appears at 210 nm in the UV spectrum. Thermal analysis indicates that the Keggin anion skeleton begins to decompose at 520 °C.  相似文献   

15.
Colorless platelet crystals of monoclinic Li2TiO3 with a maximum size of 5.0 mm × 5.0 mm × 0.5 mm were successfully grown by a flux method at 1373 K using a LiBO2-Li2O system flux. The stoichiometric chemical composition of Li2TiO3 was determined by the SEM-EDX, ICP-AES and density measurement using the single crystal samples. The thermal conductivity of the Li2TiO3 single crystals was evaluated using hot-disk method. A single-crystal X-ray diffraction study confirmed the monoclinic Li2SnO3-type structure, space group C2/c and the lattice parameters of a = 5.0623(5) Å, b = 8.7876(9) Å, c = 9.7533(15) Å, β = 100.212(11)°, and V = 427.01(9) Å3. The crystal structure was refined to the conventional values of R = 2.4% and wR=3.3% for 2187 independent observed reflections. The cationic arrangement of (LiTi2) layers in Li2TiO3 was precisely revealed by the structure analysis.  相似文献   

16.
A new yttrium borate compound K3Y3(BO3)4 has been obtained in the K2O-Y2O3-B2O3 ternary system. Its structure, determined from single crystal X-ray diffraction data, shows that it belongs to space group P21/c with unit cell dimensions of a = 10.4667(16) Å, b = 17.361(3) Å, c = 13.781(2) Å and β = 110.548(8)°. The structure consists sheets of [Y8B8O24] linked by out of sheet BO3 groups and Y ions to form a three-dimensional framework. The luminescent properties of Eu3+ and Tb3+ doped K3Y3(BO3)4 materials have also been studied.  相似文献   

17.
The new titanium oxyphosphate Co0.5TiPO5 has been prepared by solid state reaction. Its structure has been determined by single crystal X-ray diffraction and was further investigated by FT-IR spectroscopy and magnetic measurements. The compound crystallizes in the monoclinic system, S.G: P21/c [a = 7.358(1) Å, b = 7.378(2) Å, c = 7.383(3) Å, β = 119.66(3)°, Z = 4, R1 = 0.0142, wR2 = 0.0429]. The structure can be described as a network of very distorted TiO6 octahedra, in which the Ti4+ ions are displaced from the centres of the octahedra, and slightly distorted PO4 tetrahedra. Half of the octahedral cavities are occupied by Co atoms. The other half of octahedral sites is vacant and favourable for the electrochemical insertion of lithium. The insertion of lithium was studied by galvanostatic charging and discharging between different voltage limits.  相似文献   

18.
Long, needle-shaped single crystals of K2TiO3 were grown out of a reactive high temperature hydroxide melt. The structure was determined by single crystal X-ray diffraction and found to crystallize in the orthorhombic Cmcm space group with a = 10.0283(2) Å, b = 6.9346(2) Å, c = 5.4534(1) Å, V = 379.242(15) Å3, and Z = 4. The structure is related to the K2SnO3 and K2ZrO3 structures, which crystallize in the Pnma space group, and that of K2PbO3, which crystallizes in the Cmc21 space group. The structure consists of chains of trans edge-sharing TiO5 rectangular pyramids with alternating apical directions. The chains are separated by KO7 polyhedra.  相似文献   

19.
The LiPO3-Y(PO3)3 system has been studied for the first time. Microdifferential thermal analysis (μ-DTA), infrared spectroscopy (IR) and X-ray diffraction were used to investigate the liquidus and solidus relations. The only new compound observed within this system is LiY(PO3)4, melting incongruently at 1104 K. An eutectic appears at 4±1 mol% Y(PO3)3 at 933 K. LiY(PO3)4 crystallizes in the monoclinic system C2/c with a unit cell: a=16.201(4) Å, b=7.013(2) Å, c=9.573(2) Å, β=125.589(9)°, Z=4 and V=884.5 Å3, which is isostructural to LiNd(PO3)4. The infrared absorption spectrum indicates that this salt is a chain polyphosphate.  相似文献   

20.
The new oxyarsenate Li0.5Ni0.25TiOAsO4 has been synthesized and studied by a combination of X-ray powder diffraction, neutrons powder diffraction and vibrational spectroscopy. Li0.5Ni0.25TiOAsO4 crystallizes in the monoclinic P21/c space group with the unit cell parameters: a = 6.5854(3) Å, b = 7.4665(4) Å, c = 7.4969(4) Å, β = 89.884(6)°, V = 368.62(1) Å3 and Z = 4. The structure has been determined at room temperature from neutrons diffraction by the Rietveld method analysis. It is formed by a 3D network of TiO6 octahedra and AsO4 tetrahedra sharing corners. Structural refinement shows a partial and a statistical occupancy of 2a and 2b sites by Li+ and Ni2+ ions. TiO6 octahedra are linked together by corners and form infinite chains along c-axis. Raman and infrared studies confirm the existence of -TiOTi- chains. Diffuse reflectance spectrum indicates the presence of octahedrally coordinated Ni2+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号