首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We prepared a ZnO/TiO2/ZnO multi-layer on quartz glass substrate via electron beam evaporation. Optical and structural properties of the ZnO/TiO2/ZnO multi-layer were investigated. The TiO2 buffer layer is found to improve the crystallinity of the ZnO thin film. A green emission of the ZnO thin film deposited on the TiO2 buffer layer was significantly enhanced due to the increased defect concentration of oxygen vacancy. Photoluminesence spectra measured at 9 K revealed that a violet luminescence at 409 nm was attributed to the draft of the donor's defect levels in the ZnO thin film.  相似文献   

2.
Titanium oxide thin films were deposited by DC reactive magnetron sputtering on ZnO (80 nm thickness)/soda-lime glass and SiO2 substrates at different gas pressures. The post annealing on the deposited films was performed at 400 °C in air atmosphere. The results of X-ray diffraction (XRD) showed that the films had anatase phase after annealing at 400 °C. The structure and morphology of deposited layers were evaluated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The surface grain size and roughness of TiO2 thin films after annealing were around 10-15 nm and 2-8 nm, respectively. The optical transmittance of the films was measured using ultraviolet-visible light (UV-vis) spectrophotometer and photocatalytic activities of the samples were evaluated by the degradation of Methylene Blue (MB) dye. Using ZnO thin film as buffer layer, the photocatalytic properties of TiO2 films were improved.  相似文献   

3.
Photocatalytic properties of porous TiO2/Ag thin films   总被引:1,自引:0,他引:1  
In this study, nanocrystalline TiO2/Ag composite thin films were prepared by a sol-gel spin-coating technique. By introducing polystyrene (PS) spheres into the precursor solution, porous TiO2/Ag thin films were prepared after calcination at a temperature of 500 °C for 4 h. Three different sizes (50, 200, and 400 nm) of PS spheres were used to prepare porous TiO2 films. The as-prepared TiO2 and TiO2/Ag thin films were characterized by X-ray diffractometry (XRD) and by scanning electron microscopy to reveal structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methylene blue under UV irradiation.When PS spheres of different sizes were introduced after calcination, the as-prepared TiO2 films exhibited different porous structures. XRD results showed that all TiO2/Ag films exhibited a major anatase phase. The photodegradation of porous TiO2 thin films prepared with 200 nm PS spheres and doped with 1 mol% Ag exhibited the best photocatalytic efficiency where ∼ 100% methylene blue was decomposed within 8 h under UV exposure.  相似文献   

4.
Micro-sized Sb2O3 hierarchical structures were prepared by carbothermal reduction method, using antimony doped tin oxide (ATO) nanoparticles and graphite powder as source materials. The products were characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and field-emission scanning electron microscopy (FE-SEM). Furthermore, the possible growth mechanism of the as-synthesized samples was discussed. The room-temperature photoluminescence (PL) measurement exhibited one relatively strong violet emission peak at about 420 nm under the 325 nm excitation wavelength and another violet emission peak, about three times stronger in intensity than the former, at about 435 nm under the 365 nm excitation wavelength. In addition, the optimal excitation wavelength of 363 nm was obtained and the luminescence causes were speculated.  相似文献   

5.
Cu2SnS3 thin film have been synthesized by solid state reaction under vapour sulphur pressure at 530 °C, during 6 h, via a sequentially deposited copper and tin layers Cu/Sn/Cu…Sn/Cu/Sn. The structure and the composition were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Probe Micro Analysis (EPMA). X-ray diffraction revealed that as the deposited film crystallizes in the cubic structure and the crystallites exhibit preferential 111 orientation of the grains. Moreover, EPMA analysis confirmed that the obtained film is stoichiometric. The SEM study shows the presence of spherical particles of ≈100-120 nm diameters. The optical absorption coefficient and band gap of the film were estimated by means of transmission and reflection optical measurements at room temperature. A relatively high absorption coefficient in the range of 104 cm−1 was indeed obtained and the band gap value is of the order of 1.1 eV. On the other hand, the electrical conductivity of Cu2SnS3 film prepared in the present experiment is suitable for fabricating a thin film solar cell based on not cheaper and environmental friendly material.  相似文献   

6.
High density TiO2 nanotube film with hexagonal shape and narrow size distribution was fabricated by templating ZnO nanorod array film and sol-gel process. Well-aligned ZnO nanorod array films obtained by aqueous solution method were used as template to synthesize ZnO/TiO2 core-shell structure through sol-gel process. Subsequently, TiO2 nanotube array films survived by removing the ZnO nanorod cores using wet-chemical etching. Polycrystalline anatase TiO2 nanotube films were ∼ 1.5 μm long and ∼ 100 nm in inter diameter with a wall thickness of ∼ 10 nm.  相似文献   

7.
Study of structural and optical properties of Ge doped ZnO films   总被引:1,自引:0,他引:1  
The Ge doped ZnO films were deposited on quartz substrates by radio frequency magnetron sputtering. The effects of doping and substrate temperature on the structural and optical properties of the Ge doped ZnO films were investigated by means of X-ray diffraction (XRD), UV-visible transmission spectra, X-ray photoelectron spectroscopy and photoluminescence (PL) spectra. The XRD patterns showed that Zn2GeO4 phases were formed in the films. With the increase of substrate temperature the crystallization of Zn2GeO4 was improved, and that of ZnO phases turned worse, and no diffraction peak of ZnO was observed when the substrate temperature was 700 °C. Obvious ultraviolet (UV) light emission was found due to ZnO grains, and it was much stronger than that of un-doped ZnO films. The enhancement of UV light emission at about 380 nm may be caused by excitons which were formed at the interface between Zn2GeO4 and ZnO grains. In the visible region of the PL spectra, the green light emission peak of samples at about 512 nm was associated with defects in ZnO. A red shift of the green light emission peak was observed which can be explained by the fact that there is a luminescence center at about 548 nm taking the place of the defect emission of ZnO with the increase of substrate temperature. The red shift of the green light emission peak and the 548 nm green light emission peaks of the PL spectrum show that some Ge2+ should replace the Zn2+ positions during the Zn2GeO4 grains growth and form the Ge2+ luminescence centers in Zn2GeO4 grains.  相似文献   

8.
《Materials Letters》2007,61(8-9):1763-1766
ZnO films deposited on glass, quartz and Al on silicon mono-crystal Si (100) substrates by using the wire explosion technique were investigated by X-ray diffraction (XRD), UV–VIS spectroscopy, scanning electron (SEM) and atomic force microscopy (AFM) measurements. X-ray diffraction measurements have shown that ZnO films are mainly composed of (100), (002) and (101) orientation crystallites. The post-deposition thermal treatment at 600 °C temperature in air has shown that the composite of Zn/ZnO film was fully oxidized to ZnO film. The XRD spectra of the film deposited in oxygen atmosphere at room temperature present high intensity dominating peak at 2h = 36, 32° corresponding to the (101) ZnO diffraction peak. The small fraction of the film (7%) corresponds to the (002) peak intensity at 2h = 34, 42°. This result indicates the good crystal quality of the film and hexagonal wurtzite-type structure deposited by zinc wire explosion. The optical absorption spectra shows the bands at 374, 373 and 371 nm corresponding to deposition conditions. The SEM analysis shows that ZnO films presented different morphologies from fractal network to porous films depending on deposition conditions. AFM analysis revealed the grain size ranges from 50 nm to 500 nm. The nanoneedles up to 300 nm in length were found as typical structures in the film. It was demonstrated that the wire explosion technique is a feasible method to produce ZnO crystalline thin films and nanostructures.  相似文献   

9.
Anatase-TiO2 nano-particles have been synthesized by using long-carbon chain carboxylic acid and titanium tetrachloride (TiCl4). As-prepared powder has been calcined at 500 °C to obtain highly crystalline TiO2. Broad X-ray diffraction (XRD) pattern of as-prepared as well as calcined powder showed all prominent peaks for tetragonal crystal structure representing anatase-TiO2. The particle diameter by applying Scherrer formula was found to be about 20 nm. It was possible to load as-prepared particles in poly vinyl alcohol (PVA) for optical studies. Optically transparent film showed sharp absorption band for TiO2 nano-particles at ∼ 300 nm. Photoluminescence (PL) studies of the solution showed emission wavelength at about 330 nm. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) revealed that the particles in the film have uniform distribution and even for the powder no agglomeration was observed. Thermal analysis (TGA) showed that the stability of host polymer is enhanced. FTIR spectra showed presence of carboxylate functional group in the powder.  相似文献   

10.
Optical characterization of ZnO thin films deposited by Sol-gel method   总被引:1,自引:0,他引:1  
In this paper, ZnO thin film is deposited on Pt/TiO2/SiO2/Si substrate using the sol-gel method and the effect of annealing temperature on the structural morphology and optical properties of ZnO thin films is investigated. The ZnO thin films are crystallized by the heat treatment at over 400°C. The ZnO thin film annealed at 600°C exhibits the greatest c-axis orientation and the Full-Width-Half-Maximum (FWHM) of X-ray peak is 0.4360°. A dense ZnO thin film is deposited by the growth of uniform grains with the increase of annealing temperature but when the annealing temperature increases to 700°C, the surface morphology of ZnO thin film becomes worse by the aggregation of ZnO particles. In the results of surface morphology of ZnO thin film using atomic force microscope (AFM), the surface roughness of ZnO thin film annealed at 600°C is smallest, that is, approximately 1.048 nm. For the PL characteristics of ZnO thin film, it is observed that ZnO thin film annealed at 600°C exhibits the greatest UV (ultraviolet) exciton emission at approximately 378 nm, and the smallest visible emission at approximately 510 nm among ZnO thin films annealed at various temperatures. It is deduced that ZnO thin film annealed at 600°C is formed most stoichiometrically, since the visible emission at approximately 510 nm comes from either oxygen vacancies or impurities.  相似文献   

11.
The Ba0.5Sr0.5TiO3 (BST) thin film with the thickness of 400 nm deposited from powder target is prepared by the radio-frequency magnetron sputtering technique. The deposition rate of BST film is estimated to be 45 nm/min, which is very fast for ferroelectric materials. The dielectric properties of the as-prepared BST thin film are demonstrated. High dielectric tunability up to 42.7% and low dielectric loss small to 0.01 are achieved at a low applied voltage of 5 V. The results demonstrate that the RF magnetron sputtering from powder target is a versatile, novel technique for the deposition of high-quality ferroelectric thin films.  相似文献   

12.
In this work Eu-doped TiO2 thin films prepared by reactive magnetron co-sputtering of Ti-Eu metallic target have been studied. The results of photoluminescence (PL) and its correlation with microstructure have been described. Structural properties were examined by X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). XRD studies have shown that thin films consisted of TiO2-anatase and AFM images display their high quality and dense nanocrystalline structure. PL spectra, measured at room temperature, show a dominating strong red luminescence corresponding to 5D0-7F2 transition at ∼ 617 nm and ∼ 623 nm. The evolution of photoluminescence and microstructure of the thin films has been examined as they were additionally annealed in an air ambient.  相似文献   

13.
Using triethylamine as a surface protective agent, a transparent and pale yellowish TiO2 sol had been prepared at 90 °C. This method was very different from the traditional methods, which produced titanium dioxide nanoparticles with anatase crystalline structure either at high acid condition or high temperature. X-ray diffraction (XRD) and transmission electron spectroscopy (TEM) demonstrated that the as-prepared TiO2 sol nanoparticles with anatase crystalline structure were uniformly distributed, and the average size was 3 nm. X-ray photoelectron spectroscopy (XPS) and UV-vis absorption spectra showed that triethylamine was adsorbed on TiO2 sol particles surface. FTIR spectroscopy noted that TiO2 sol particles had the similar spectra with Degussa P25. Photoactivity of the as-prepared TiO2 sol was studied by investigating the photodegradation of methyl violet in hydrosol reaction system under visible light irradiation.  相似文献   

14.
《Materials Letters》2007,61(14-15):2961-2964
Zinc oxide thin films (ZnO) with different thickness were prepared on Si (111) substrates using low energy O+ assisted pulse laser deposition (PLD). The structural and morphological properties of the films were investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM) measurements, respectively. The quality of ZnO films was also examined by using Rutherford backscattering spectroscopy/ion channeling (RBS/C) techniques. XRD showed that there was only one sharp diffraction peak at 2θ = 34.3° with the full width at the half maximum (FWHM) of around 0.34° for two ZnO samples, which also indicated that ZnO thin films had a good c-axis preferred orientation. Results of Rutherford backscattering and ion channeling clearly indicated that the Zn:O ratio in zinc oxide thin film approached to unity and the ZnO thin film grown by low energy O+ assisted pulse laser deposition had a polycrystalline structure. In the case of ZnO film fabricated by low energy O+ assisted pulse laser deposited under identical experimental conditions except growth time, AFM analysis has shown that the root mean square (RMS) roughness (2.37 nm) of thinner ZnO film (35 nm) was far below that (13.45 nm) of the thicker ZnO film (72 nm).  相似文献   

15.
The TiO2/Ag/Ti/TiO2/SiON multilayer film was deposited on glass substrate at room temperature using magnetron sputtering method. By varying the thickness of each layer, the optical property was optimized to achieve good selective spectral filtering performance in Vis-NIR region. The multilayer film achieves maximum transmittance of 92.7% at 690 nm, in which the both TiO2 layers are 33 nm. For good conductivity and transmittance, a 4 nm Ti layer and a 30 nm SiON layer are necessary.  相似文献   

16.
Cheng-Hsing Hsu 《Thin solid films》2009,517(17):5061-1132
Zirconium tin titanium oxide doped 1 wt.% ZnO thin films on n-type Si substrate were deposited by rf magnetron sputtering at a fixed rf power of 300 W, a substrate temperature of 450 °C, a deposition pressure of 5 mTorr and an Ar/O2 ratio of 100/0 with various annealing temperatures and annealing times. Electrical properties and microstructures of 1 wt.% ZnO-doped (Zr0.8Sn0.2)TiO4 thin films prepared by rf magnetron sputtering on n-type Si(100) substrates at different annealing temperatures (500 °C-700 °C) and annealing times (2 h-6 h) have been investigated. The structural and morphological characteristics analyzed by X-ray diffraction (XRD) and atomic force microscope (AFM) were sensitive to the treatment conditions such as annealing temperature and annealing time. At an annealing temperature of 600 °C and an annealing time of 6 h, the ZnO-doped (Zr0.8Sn0.2)TiO4 thin films possess a dielectric constant of 46 (at f = 10 MHz), a dissipation factor of 0.059 (at f = 10 MHz), and a low leakage current density of 3.8 × 10− 9 A/cm2 at an electrical field of 1 kV/cm.  相似文献   

17.
Large-scale fan-shaped rutile TiO2 nanostructures have been synthesized by means of a simple hydrothermal method using only TiCl4 as titanium source and chloroform/water as solvents. The physicochemical features of the fan-shaped TiO2 nanostructures are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), nitrogen absorption-desorption, diffuse reflectance ultraviolet-visible spectroscopy (UV-vis) and Fourier transform infrared spectroscopy (FTIR). Structural characterization indicates that the fan-shaped TiO2 nanostructures are composed of several TiO2 nanorods with diameters of about 5 nm and lengths of 300-350 nm. The average pore size and BET surface area of the fan-shaped TiO2 nanostructures are 6.2 nm and 59 m2/g, respectively. Optical adsorption investigation shows that the fan-shaped TiO2 nanostructures possess optical band gap energy of 3.11 eV.  相似文献   

18.
Metal plasma ion implantation has being successfully developed for improving the electronic and optical properties of semiconductor materials. Prior to deposition, a TiO2 colloidal suspension was synthesized by microwave-induced thermal hydrolysis of the titanium tetrachloride aqueous solution. The TiO2 thin film was optimized to obtain a high-purity crystalline anatase phase by calcinations at 550 °C. The TiO2 coating was uniform without aggregation, which provided good photo conversion efficiency. Ag ion implantation into the as-calcined TiO2 thin films was conducted with 1 × 1015 ~ 1 × 1016 ions/cm2 at 40 keV. The peak position and intensity of the photoluminescence and UV-Vis absorption spectra are quite sensitive to Ag doping. The optical characterization showed a shift in optical absorption wavelength towards infrared ray side, which was correlated with the structure variation of the Ag+ implanted TiO2. Due to the strong capability of forming compounds between the energetic silver ions and TiO2, the photoluminescence emission and UV-Vis absorption efficiencies were improved.  相似文献   

19.
GaN nanorods have been synthesized by ammoniating Ga2O3 films on a TiO2 middle layer deposited on Si(111) substrates. The products were characterized by X-Ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transformed infrared spectra (FTIR) and high-resolution transmission electron microscopy (HRTEM). The XRD analysis indicates that the crystallization of GaN film fabricated on TiO2 middle layer is rather excellent. The FTIR, SEM and HRTEM demonstrate that these nanorods are hexagonal GaN and possess a rough morphology with a diameter ranging from 200 nm to 500 nm and a length less than 10 μm, the growth mechanism of crystalline GaN nanorods is discussed briefly.  相似文献   

20.
TiO2 thin films were prepared by DC reactive magnetron sputtering in a mixture of oxygen and argon on glass and oxidized silicon substrates. The effect of post-deposition annealing (300 °C, 500 °C and 700 °C for 8 h in air) on the structural and morphological properties of TiO2 thin films is presented. In addition, the effect of Pt surface modification (1, 3 and 5 nm) on hydrogen sensing was studied. XRD patterns have shown that in the range of annealing temperatures from 300 °C to 500 °C crystallization starts and the thin film structure changes from amorphous to polycrystalline (anatase phase). In the case of samples on glass substrate, optical transmittance spectra were recorded. TiO2 thin films were tested as sensors of hydrogen at concentrations 10,000-1000 ppm and operating temperatures within the 180-200 °C range. The samples with 1 nm and in particular with 3 nm of Pt on the surface responded to hydrogen fast and with high sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号