首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 934 毫秒
1.
We prepared TiO2-SiO2 thin films with various TiO2/SiO2 ratios by sol-gel dip coating method and explored the dependence of their structural and optical properties on calcination temperature. The absorption peaks relevant to Si—O, Si—O—Ti and Ti—O bonds appeared in the FTIR spectra. With increasing TiO2 content, the intensity of Si—O bond peaks decreases and that of Ti—O bond peaks increases. The XRD results show that the temperature of transformation from amorphous to anatase phase is lowered as TiO2 content increases. The crystallite size of anatase phase in composite thin films increases with increasing TiO2 content and calcination temperature. At 1000°C, the mixed phase of anatase and rutile appears in the pure TiO2 thin films. The rutile films are denser than the anatase films. The increase in refractive index of composite thin films with calcination temperature is related to the decreased thickness and increased density as a result of evaporation of water and organic matters below 400°C. On the other hand, it is related to the change in the crystal phase and crystallite size of the films over 400°C.  相似文献   

2.
Titanium oxide (TiOx) thin films were deposited on the Si(100) substrates by direct-current reactive magnetron sputtering at 3-15 % oxygen flow ratios (FO2% = FO2/(FO2 + FAr) × 100%), and then annealed by rapid thermal annealing (RTA) at 350-750 °C for 2 min in air. The phase, bonding and luminescence behaviors of the as-deposited and annealed TiOx thin films were analyzed by X-ray diffraction (XRD), Raman spectroscopy and photoluminescence (PL) spectroscopy, respectively. The as-deposited TiOx films were amorphous from XRD and showed weak Raman intensity. In contrast, the distinct crystalline peaks of anatase and rutile phases were detected after RTA at 550-750 °C from both XRD and Raman spectra. A mixture of anatase and rutile phases was obtained by RTA at 3 FO2% and its amount increased with annealing temperature. Only the anatase phase was detected in the 6-15 FO2% specimens after RTA. The PL spectra of all post-annealed TiOx films showed a broad peak in visible light region. The PL peak of TiOx film at 3 FO2% at 750 °C annealing can be fitted into two Gaussian peaks at ~ 486 nm (2.55 eV) and ~ 588 nm (2.11 eV) which were attributed to deep-level emissions of oxygen vacancies in the rutile and anatase phases, respectively. The peak around 550 nm was observed at 6-15 FO2% which is attributed to electron-hole pair recombination from oxygen vacancy state in anatase phase to valence band. The variation of intensity of PL peaks is concerned with the formation of the rutile and anatase phases at different FO2% and annealing temperatures.  相似文献   

3.
D.S. Jang  H.Y. Lee  J.J. Lee 《Thin solid films》2009,517(14):3967-3970
The optical and photocatalytic properties of TiO2 are closely related to crystalline structures, such as rutile and anatase. In this paper, TiO2 films were produced by inductively coupled plasma (ICP) assisted chemical vapor deposition (CVD) without extra heating of the substrate, and the effect of H2 addition on the structure and optical properties of the films was investigated. After increasing the partial pressure of H2, the structure of the TiO2 films changed from anatase to rutile, which usually appears at high temperatures (> 600 °C). The light transmittance decreased with increasing the H2 flow rate due to the increased surface roughness. The photocatalytic activity of the anatase TiO2 film was better than that of the rutile TiO2 film.  相似文献   

4.
The respective influences of calcination, drying methods, and washing conditions on the morphologies, surface properties, and photocatalytic activities of TiO2 powders prepared from acid treatments of BaTiO3 were investigated. Rutile powder was obtained using the treatment under strong acid conditions. It possesses a bundle-like shape and comprises rutile nanorods. After calcination, characteristic voids were observed in the particles. Anatase powder was obtained by adjusting pH values of a BaTiO3 suspension to 2.5-3. Drying at 110 °C engendered the formation of spheroidal anatase, although freeze-dried anatase particles assembled into a flake-like shape. The freeze-dried samples show lower crystallinity. With grafting Cu ions, rutile exhibited better photocatalytic performance for the decomposition of gaseous 2-propanol (IPA) under visible light, although it did not work effectively for anatase.  相似文献   

5.
Polycrystalline Fe-doped TiO2 anatase films were deposited on (001) oriented SrTiO3 single crystal substrates at temperatures less than 200 °C from acidic aqueous solutions of titanyl sulfate and iron (III) nitrate. Epitaxial anatase TiO2 films were obtained when the films were annealed in air at 900 °C. Room-temperature ferromagnetic Fe-doped TiO2 thin films were obtained after repeated deposition and annealing steps. The observed saturation magnetization (>0.28μB/Fe) could not be attributed to the presence of secondary phase magnetic iron oxides or iron clusters.  相似文献   

6.
This study examined hydrogen production over Ag-TiO2 photocatalysts containing AgxO, a conducting component. X-ray photon spectroscopy (XPS) confirmed that the Ag and Ag2O components were dominant in the Ag-TiO2 photocatalysts treated at 500 and 800 °C, respectively. The Ti2p bands in Ag-TiO2 were shifted to lower binding energies, which were assigned to Ti3+, compared to pure TiO2, and the shift was greater in the rutile structure than in the anatase. The measured full widths at half maximum (FWHM) of the Ag3d and Ti2p peaks were larger in the anatase structure than in the rutile structure in both TiO2 and Ag-TiO2. The H2 production from methanol photodecomposition was greater over the rutile structure than over the anatase structure of TiO2. Moreover, the amount of hydrogen was enhanced over Ag-TiO2 compared to pure TiO2; the production reached 17,124 μmol after 24 h over rutile Ag-TiO2. After methanol photodecomposition, the amount of Ag component in the Ag-TiO2 photocatalysts increased, while the Ag2O component decreased.  相似文献   

7.
SnO2–TiO2 heterostructure films were prepared through Langmuir–Blodgett (LB) route. LB films of octadecyl amine (ODA)–titanyl oxalate multilayer deposited on Si (100) and decomposed at 600 °C showed rutile and anatase phases of ultrathin TiO2 film. Subsequently, multilayer LB film of ODA–stannate deposited on the pre deposited TiO2 film after decomposition at 600 °C resulted in thin SnO2 films on the TiO2 thin film. The phase analysis of the SnO2–TiO2 film showed cassiterite phase of SnO2 as well as the rutile/anatase mixture of TiO2 indicating a SnO2–TiO2 heterostructured film. Surface morphology of the pure TiO2 film and SnO2–TiO2 film were analyzed by using AFM. Electrical characterization by AC impedance analysis suggested SnO2–TiO2 heterostructure formation. DC current voltage measurement showed increase in photocurrent indicating visible light absorption and efficient charge separation under the sunlight type radiation.  相似文献   

8.
Silica aerogels and TiO2/silica aerogel composite photocatalysts were synthesized by sol–gel technique at ambient pressure using orthosilioate and tetra-n-butyl titanate as precursors, respectively. The prepared composite photocatalysts were characterized by XRD, TEM, BET surface area, FT-IR and UV–vis absorption spectra. The results showed that the TiO2/silica aerogel composite photocatalysts possess high surface area. The addition of silica aerogels inhibited the grain growth and phase transformation of anatase to rutile during calcination. The TiO2/silica aerogel composite sample calcined at 500 °C with an optimal silica aerogel content of 7 wt.% afforded the highest photocatalytic activity. The photocatalytic degradation of 2-sec-butyl-4,6-dinitrophenol (DNBP) was investigated by using this novel TiO2/silica aerogel composite photocatalyst under solar light irradiation. The effects of irradiation time, pH, catalyst concentration, temperature and initial DNBP concentration were examined as operational parameters. The optimal operational parameters were found as follows: pH as solution pH 4.82, 8 g L−1 catalyst concentration, 20 °C, and 240 min irradiation time. The kinetics of DNBP degradation by TiO2/silica aerogel composite fit well a pseudo-first-order kinetic model. The repeatability of photocatalytic activity was also tested. This study showed the feasible and potential use of TiO2/silica aerogel composite photocatalysts in degradation of toxic organic contaminants.  相似文献   

9.
Kei Yasui 《Materials Letters》2010,64(19):2036-133
White, almost carbon-free TiO2 powders were prepared from a titanium citrate complex ((NH4)4[Ti2(C6H4O7)2(O2)2]·4H2O) using a two-step hydrothermal treatment. The product yield, carbon contamination, and crystalline phase of TiO2 depended on both the temperature and pH value for each treatment. Titanium was precipitated as a solid phase (H2Ti2O5·H2O) using the first hydrothermal treatment in the basic condition (pH = 12) at temperatures less than 150 °C. Then white rutile or anatase powder was crystallized using the second hydrothermal treatment at 200 °C. By changing the pH condition of the second hydrothermal treatment, rutile and anatase were synthesized selectively. The photocatalytic decomposition activity of obtained rutile powder for gaseous 2-propanol under visible light was increased by Cu-grafting.  相似文献   

10.
《Materials Letters》2006,60(17-18):2101-2104
Nano TiO2 coated commercial nano ZrO2 powders (20 and 80 wt.%) were synthesized by a sol–gel process. Their microstructure and crystal structure depending on the calcination temperatures were investigated using XRD and HRTEM techniques. In the as-received powders, the nano TiO2 particles attached to the ZrO2 particles existed in an amorphous phase. After calcination at 450 and 600 °C, most of the TiO2 powders were crystallized to an anatase type, whereas at 750 °C, they were changed to a rutile phase.From the comparison of photocatalytic activity, the nano TiO2 coated ZrO2 powders calcined at 450 and 600 °C showed excellent efficiency for the removal of methyl orange (MO). However, in the powders calcined at 750 °C, the photocatalytic activity was decreased due to the appearance of a rutile phase.  相似文献   

11.
The sol-gel spray pyrolysis method was used to grow TiO2 thin films onto silicon wafers at substrate temperatures between 315 and 500 °C using pulsed spray solution feed followed by annealing in the temperature interval from 500 to 800 °C in air. According to FTIR, XRD, and Raman, the anatase/rutile phase transformation temperature was found to depend on the film deposition temperature. Film thickness and refractive index were determined by Ellipsometry, giving the refractive indexes of 2.1-2.3 and 2.2-2.6 for anatase and rutile, respectively. According to AFM, film roughness increases with annealing temperature from 700 to 800 °C from 0.60 to 1.10 nm and from 0.35 to 0.70 nm for the films deposited at 375 and 435 °C, respectively. The effective dielectric constant values were in the range of 36 to 46 for anatase and 53 to 70 for rutile at 10 kHz. The conductivity activation energy for TiO2 films with anatase and rutile structure was found to be 100 and 60 meV, respectively.  相似文献   

12.
Titania (TiO2) powders have been prepared from the 0.025-M titanium isopropoxide/ethanol solution and the 0.5-M distilled water/ethanol solution. The prepared TiO2 powders showed an anatase phase and a rutile phase after heat treatment at 500°C for 2 h and 1000°C for 2 h, respectively. The heterocoagulation adsorption between TiO2 powder and sericite surface in water was achieved in the range of pH 3.63.7 (where this pH range shows a maximum Zeta-potential difference for two powders). On the other hand, an anomalous transformation behavior appeared in the TiO2-adsorbed sericite after heat treatment at 1000°C. The surface modification of sericite through the TiO2-adsorption improved the whiteness as well as the SPF (Sun Protection Factor) indices.  相似文献   

13.
Titanium (IV) oxide thin films prepared by low temperature (95 °C) hydrothermal growth were observed to undergo important structural modifications upon variation of the deposition period, modifications strongly affecting the nonlinear optical (NLO) response of the films. Depending on the growth time, the films were observed to contain anatase or rutile TiO2. It was found that only anatase TiO2 exhibits significant nonlinear optical response.  相似文献   

14.
This works employed K2Ti4O9, a novel Ti source, to prepare TiO2 powders. By a “low-temperature dissolution-reprecipitation process” (LTDRP), rutile phase TiO2 was successfully synthesized after reacting at 50 °C for 48 h. The obtained sample showed a specific surface area about 45 m2/g, and excellent activity in photo-destruction of NOx gas. The coupling of rutile phase TiO2 with commercial anatase TiO2 showed significant effect in further enhancing the photocatalytic activity.  相似文献   

15.
Nanocrystalline TiO2 was synthesized by controlled hydrolysis of titanium tetraisopropoxide. The anatase phase was converted to rutile phase by thermal treatment at 1023 K for 11 h. The catalysts were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), Fourier-transform infrared absorption spectrophotometry (FT-IR) and N2 adsorption (BET) at 77 K. This study compare the photocatalytic activity of the anatase and rutile phases of nanocrystalline TiO2 for the degradation of acetophenone, nitrobenzene, methylene blue and malachite green present in aqueous solutions. The initial rate of degradation was calculated to compare the photocatalytic activity of anatase and rutile nanocrystalline TiO2 for the degradation of different substances under ultraviolet light irradiation. The higher photocatalytic activity was obtained in anatase phase TiO2 for the degradation of all substances as compared with rutile phase. It is concluded that the higher photocatalytic activity in anatase TiO2 is due to parameters like band-gap, number of hydroxyl groups, surface area and porosity of the catalyst.  相似文献   

16.
Different amounts of Co-doped TiO2 powders and thin films were prepared by following a conventional co-precipitation and sol–gel dip coating technique, respectively. The synthesized powders and thin films were subjected to thermal treatments from 400 to 800 °C and were thoroughly investigated by means of X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive analysis with X-rays, FT-infrared, FT-Raman, diffuse reflectance spectroscopy, ultraviolet–visible spectroscopy, BET surface area, zeta potential, flat band potential measurements, band-gap energy, etc. The photocatalytic ability of the powders was evaluated by methylene blue (MB) degradation studies. The thin films were characterized by photocurrent and ultraviolet–visible (UV–Vis) spectroscopy techniques. The characterization results suggest that the Co-doped TiO2 powders synthesized in this study consist mainly anatase phase, and possess reasonably high specific surface area, low band gap energy and flat band potentials amenable to water oxidation in photoelectrochemical (PEC) cells. The photocatalytic degradation of MB over Co-doped TiO2 powders followed the Langmuir–Hinshelwood first order reaction rate relationship. The 0.1 wt.% Co-doped TiO2 composition provided the higher photocurrent, n-type semi-conducting behavior and higher photocatalytic activity among various Co-doped TiO2 compositions and pure TiO2 investigated.  相似文献   

17.
Doped dandelion-like TiO2 microspheres assembled nanorods were synthesized from rutile powders using either urea or thiourea leading to N- or S-doped TiO2. The rutile particles reacted in concentrated NaOH and urea (or thiourea) solution under hydrothermal conditions (200 °C for 24 h), yielding N- and S-doped TiO2 nanodandelions with diameters ranging from 0.7 to 1.3 μm. SEM, HRTEM, X-ray diffraction (XRD) and IR spectra were used to characterize the synthesis of powders. The results show that concentrated urea (or thiourea) and NaOH are used as additives that help in the construction of the dandelion-like structures. The fabricated nanostructures exhibit high photocatalytic activity in the photodegradation of aqueous Methylene Blue solution.  相似文献   

18.
Well-aligned TiO2/Ti nanotube arrays were synthesized by anodic oxidation of titanium foil in 0.5 wt.% HF in various anodization voltages. The images of filed emission scanning electron microscopy indicate that the nanotubes structure parameters, such as diameter, wall thickness and density, can be controlled by adjusting the anodization voltage. The peaks at 25.3° and 48.0° of X-ray diffraction pattern illuminate that the TiO2 nanotube arrays annealed at 500 °C are mainly in anatase phase. The filed emission (FE) properties of the samples were investigated. A turn-on electric field 7.8 V/µm, a field enhancement factors approximately 870 and a highest FE current density 3.4 mA/cm2 were obtained. The emission current (2.3 mA/cm2 at 18.8 V/µm) was quite stable within 480 min. The results show that the FE properties of TiO2/Ti have much relation to the structure parameters.  相似文献   

19.
Thin films of TiO2 have been prepared by reactive evaporation of Ti2O3 at substrate temperatures from 150 °C to 350 °C and by post‐heating at 150 °C to 850 °C. The mass density of the films increases with increasing substrate and annealing temperature. The crystalline structure of the film prepared at 350 °C is anatase and becomes rutile upon annealing at 850 °C. All other films are amorphous as‐prepared and become anatase upon annealing above 250 °C. The crystallinity is higher for films prepared at lower temperature and does not increase with annealing temperature. Coatings with reproducible optical properties are obtained when deposited and post‐annealed at 250 °C.  相似文献   

20.
The effect of SrO addition on the thermal stabilization of transition aluminas with the aim of producing membrane layers (supported and unsupported) has been investigated. Al2O3x wt.% SrO composite powders (x = 1, 3, 5, 8) were synthesized by co-precipitation of the hydroxides from solutions of AlCl3 and Sr(NO3)2 salts using NH4OH as a precipitating agent. Optimum SrO dopant concentration regarding the transition aluminas stabilization effect was determined to be 5 wt.% based on XRD analysis. STA analysis showed a 30 °C shift versus higher temperatures in the transformation of final transitional alumina (θ-Al2O3) to stable alpha phase due to addition of 5 wt.% SrO. The mechanism of transition aluminas thermal stabilization as a result of SrO addition is thoroughly discussed. Unsupported alumina membranes were prepared by drying boehmite sols at 600, 800, 1000 and 1100 °C. The effect of calcination temperature on surface area, pore size distribution of unsupported membranes containing 5 wt.% SrO has been investigated. The microstructure of unsupported and supported membranes revealed quite different. Smaller grains in the supported layers were attributed to the interaction between support and membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号