首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have performed the ab initio calculations based on density functional theory to investigate the B3–B1 phase transition and mechanical properties of ZnS. The elastic stiffness coefficients, C11, C12, C44, bulk modulus, Kleinman parameter, Shear modulus, Reuss modulus, Voigt modulus and anisotropy factor are calculated for two polymorphs of ZnS: zincblende (B3) and rocksalt (B1). Our results for the structural parameters and elastic constants at equilibrium phase are in good agreement with the available theoretical and experimental values. Using the enthalpy–pressure data, we have observed the B3 to B1 structural phase transition at 18.5 GPa pressure. In addition to the elastic coefficients under normal conditions, we investigate the pressure dependence of mechanical properties of both phases: up to 65 GPa for B1-phase and 20 GPa for B3-phase.  相似文献   

2.
We investigate the effects of pressure on the elasticity of zircon using the Local Density Approximation (LDA) within the density functional theory. Our LDA calculations predict the elastic constants (Cij) with positive pressure derivatives, except C66 whose pressure derivatives are nearly zero, showing small positive to negative departures with increasing pressure. We calculated Young’s moduli, E1 and E3 along the crystallographic axes a and c, respectively. At low pressures (<4 GPa) E1 < E3, but the relation reverses at pressures >4 GPa, implying a directional change of axial stiffness of zircon crystals. Our LDA calculated Hill’s average bulk (B) and shear (G) moduli show contrasting variations with pressure. B is more sensitive to pressure with positive derivatives varying from 2.25 to 5.63, as compared to much lower pressure derivatives (0.4) of G, which drops to negative values (?0.404) at pressures >7 GPa, and then take up positive values (1.3). The zircon to reidite phase transition, involving “bond switching mechanisms” [1] increases the magnitudes of both B and G, but shows relatively weak effects on their pressure derivatives. This study shows the effects of pressure on the degrees of shear and directional bulk modulus anisotropy of zircon. We also calculated its Debye temperature (708 K) from the elastic wave velocities, which fairly agrees to the available experimental data. Our study predicts that increasing pressure widens the electronic band gap of zircon, implying its greater insulation property at high pressures.  相似文献   

3.
The structural, magnetic, electronic, and elastic properties of the new Mn-based Heusler alloy Mn2RuSi at high pressure have been investigated using the first-principles calculations within density functional theory. Present calculations predict that Mn2RuSi in stable \(F\bar {4}3m\) configuration is a ferrimagnet with an optimized lattice parameter 5.76 Å. The total spin magnetic moment is 2.01 μ B per formula unit and the partial spin moments of Mn (A) and Mn (B) which mainly contribute to the total magnetic moment are 2.48 and ?0.66 μ B, respectively. Mn2RuSi exhibits half metallicity with an energy gap in the spin-down channels. The study of phase stability indicates that the elastic stiffness coefficients of Mn2RuSi with \(F\bar {4}3m\) structure satisfy the traditional mechanical stability restrictions until up to 100 GPa. In addition, various mechanical properties including bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio along with elastic wave velocitieshave also been obtained and discussed in details in the pressure range of 0–100 GPa based on the three principle elastic tensor elements C 11, C 12, and C 44 for the first time.  相似文献   

4.
First-principles calculations are performed to investigate the crystal structure, electronic properties, the elastic properties, hardness and thermodynamic properties of YAlO3. The calculated ground-state quantities such as lattice parameter, bulk modulus and its pressure derivative, the band structure and densities of states were in favorable agreement with previous works and the existing experimental data. The elastic constants Cij, the aggregate elastic moduli (B, G, E), the Poisson’s ratio, and the elastic anisotropy have been investigated. YAlO3 exhibits a slight elastic anisotropy according to the universal elastic anisotropy index AU = 0.24. The estimated hardness for YAlO3 is consistent with the experimental value, and Al–O bond in AlO6 octahedra plays an important role in the high hardness. The Y–O bonds in YO12 polyhedra exhibit different characteristic. Using the quasi-harmonic Debye model considering the phonon effects, the temperature and pressure dependencies of bulk modulus, heat capacity and thermal expansion coefficient are investigated systematically in the ranges of 0–20 GPa and 0–1300 K.  相似文献   

5.
We investigated the pressure dependence of the structural and elastic properties of OsSi2 in the range 0–60 GPa using first-principles calculations based on density functional theory. Calculations were performed within the local density approximation as well as the generalized gradient approximation to the exchange correlation potential. The calculated lattice constants and atomic fractional coordinates are in good agreement with previous experimental results. The pressure dependence of nine independent elastic constants, c11, c22, c33, c44, c55, c66, c12, c13, and c23, of orthorhombic OsSi2 has been evaluated. The isotropic bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, elastic anisotropy, and Debye temperature of polycrystalline OsSi2 under pressure are also presented.  相似文献   

6.
The structural stability, thermodynamic, electronic, and optical properties of NaH with rock salt (B1) structure and cesium chloride (B2) structure under high pressure are investigated by first-principles calculations using norm-conserving pseudopotential applying a generalized gradient approximation (GGA) for exchange and correlation. Through the analysis of energy–volume variation, we find the phase transition of NaH from B1 to B2 structure occurs at 32.3 GPa, which in good agreement with the diamond-anvil-cell high-pressure experimental value of 29.3 ± 0.9 GPa [Phys. Rev. B 36 (1987) 7664]. By using the quasi-harmonic Debye model, the thermodynamic properties including the Debye temperature ΘD, heat capacity CV, thermal expansion coefficient α, and Grüneisen parameter γ are successfully obtained in the temperature range from 0 to 700 K and pressure ranges from 0 to 32 GPa and 33 to 100 GPa for NaH B1 and B2 phases, respectively. Analysis of band structures suggests that the NaH has an indirect band gap that the valence band maximum is at the W point and the conduction minimum locates at L point. The calculated energy gaps is very close to that value obtained in recent full potential augmented plane wave calculations. The optical properties including dielectric function ?(ω), absorption coefficient α(ω), reflectivity coefficient R(ω), and refractive index n(ω) are also calculated and analyzed.  相似文献   

7.
Thin films of α-Fe2O3 (hematite) were deposited using filtered arc deposition. The structural, optical and electrical properties of the films have been characterized. High-purity hematite films were produced, free from other iron oxide phases and impurities. The films exhibit preferred orientation, with the c-axis of the hexagonal structure aligned perpendicular to the substrate. The films have an upper uncertainty bound of the porosity of 15%, with a microindentation hardness of 17.5 ± 1 GPa and elastic modulus of 1235 ± 5 GPa. The indirect and direct band gap energies were found to be approximately 1.9 eV and 2.7 eV, respectively. The refractive index, and the extinction and absorption coefficients were determined from total reflectance and direct transmittance measurements. The thin films exhibit a high resistivity (≥ 105 Ω cm) which indicates pure α-Fe2O3. An activation energy of 0.7 eV was calculated from an Arrhenius plot of the conductivity.  相似文献   

8.
Two technologically important tungstate crystals – CdWO4 and ZnWO4 – are studied theoretically using the plane wave based first-principles calculations. The optimized crystal structures were used to calculate the structural, electronic and elastic properties of both materials under varying hydrostatic pressure. It was shown that the band gaps, which are direct at ambient pressure, turn into indirect ones in both compounds in the pressure range from 5 to 10 GPa, whereas the values of the band gaps themselves depend only slightly on the applied pressure. Differences in compressibility along the crystallographic axes and the W–O, Cd–O, Zn–O chemical bonds were revealed and quantified by calculating the pressure coefficients for all these characteristic distances. The first estimations of the complete elastic tensor constants for both materials are reported.  相似文献   

9.
The phase transformation of CeO2 and ThO2 from fluorite to cotunnite-type structure under pressure is predicted within the density functional theory implemented with the GGA-PW91 method, the pressure induced structural phase transition occurs at 28.9 GPa for CeO2 and 29.8 GPa for ThO2. These values are in excellent agreement with the experimentally measured data. The elastic, electronic and optical properties at normal as well as for high-pressure phase have been calculated, particular attention is devoted to the cotunnite phase. Further, the dependence of the elastic constants, the bulk modulus B, the energy band gaps and the dielectric function on the applied pressure are presented.  相似文献   

10.
We have investigated the structural, elastic, electronic, optical and thermodynamic properties of the cubic spinel CdAl2O4 using accurate ab initio calculations. Computed equilibrium structural parameters are in good agreement with the available experimental data. Single-crystals elastic parameters are calculated for pressure up to 30 GPa using a conserving-volume total energy-strain method. Isotropic elastic parameters for ideal polycrystalline CdAl2O4 aggregates are computed in the framework of the Voigt-Reuss-Hill approximation. Result for band structure using the Engel-Vosko scheme of the GGA shows a significant improvement over the common GGA functionals. Optical spectra have been calculated for the energy range 0-30 eV. The peaks and structures in the optical spectra are assigned to interband transitions. Pressure dependence of the band gaps, static dielectric constant and static refractive index are also investigated. Pressure and thermal effects on some macroscopic properties are predicted using the quasi-harmonic Debye model.  相似文献   

11.
Using the first-principles calculation based on density-functional theory (DFT), we investigate the pressure-induced phase transitions, electronic and elastic properties of Zr at 0 K. The metal is shown to exhibit a crystal structure sequence of hcp  ω  bcc with increasing pressure. And the transitions happen at 0.14 GPa and 27.01 GPa, respectively. This is in good agreement with the experimental observation. The density of state (DOS) reveals the basic reason for the stability sequence of Zr. The shear moduli c′, c44 and bulk modulus B of bcc Zr all increase with pressure. It is found that bcc Zr satisfies the mechanical stability at pressure beyond 9 GPa. Furthermore, the high-pressure limit of 360 GPa for a stable bcc Zr is deduced for the first time from the cohesive energy calculations. The Mulliken population analysis shows that both s and p electrons transfer to the d orbital with increasing pressure, however, the number of s electrons starts to increase when the pressure exceeds about 100 GPa.  相似文献   

12.
The structural, electronic, elastic properties and stabilities of hexagonal prototype alloy ZrNiAl and its saturated hydride ZrNiAlH0.67 are investigated using the pseudopotential plane wave method within the generalized gradient approximation (GGA). The calculated structural parameters are in good agreement with the available experimental data. Partial covalent characters on ZrNiAl and ZrNiAlH0.67 are verified by the calculations of PDOS (partial density of states) and overlap population. Band structures show both ZrNiAl and ZrNiAlH0.67 belong to metals. The elastic constants and their pressure dependences are calculated using the static finite strain technique. From the analysis of the mechanical stabilities, hexagonal ZrNiAl is unstable at higher pressure than 29.34 GPa; that its hydride ZrNiAlH0.67 is stable up to 50 GPa is similar with the experimental result of isostructural LaNiInD1.63−x. Hydrogenation not only leads to strong lattice anisotropy but also leads to strong mechanical anisotropy.  相似文献   

13.
For the first time, the recently synthesized pyrochlore MgZrSi2O7 [J. Xu et al., Mater. Chem. Phys. 128 (2011) 410] has been analyzed using the first principles calculations. The electronic and elastic properties were predicted; in particular, the band gap is indirect and has the value of 6.75 eV. The bulk modulus equals to 186.51 ± 1.95 GPa. Anisotropy of elastic properties was analyzed by comparing the upper and lower estimates of the shear moduli. In addition, directional dependence of the Young's modulus was calculated and visualized; its value varies in the range from 249.7 GPa (along the a, b, c crystallographic axes) to 136.84 GPa (along the bisector direction in any of the ab, bc, ac planes).  相似文献   

14.
We report first-principles density functional theory calculations of the structural, elastic, electronic, chemical bonding and thermodynamic properties of the ternary alkaline earth metal nitrides CaMg2N2 and SrMg2N2. The calculated equilibrium structural parameters agree well with the experimental findings. Single-crystal and polycrystalline elastic constants and some related properties under pressure effect have been predicted. Both compounds exhibit a striking elastic anisotropy and a ductile behavior. Electronic properties and chemical bonding nature have been studied throughout the band structure, density of states and charge distribution analyses. It is found that these two materials have a direct band gap (Γ-Γ) and a transition to an indirect gap (Γ-M) occurs at about 8.63 and 5.16 GPa in CaMg2N2 and SrMg2N2, respectively. The chemical bonding has a mixture covalent-ionic character. Thermal effects on some macroscopic properties are predicted using the quasi-harmonic Debye model.  相似文献   

15.
We investigate the structural, elastic, and electronic properties of rutile-type SnO2 by plane-wave pseudopotential density functional theory method. The lattice constants, bulk modulus and its pressure derivative are all calculated. These properties at equilibrium phase are well consistent with the available experimental and theoretical data. Especially, we study the pressure dependence of elastic properties such as the elastic constants, elastic anisotropy, aggregate acoustic velocities and elastic Debye temperature Θ. It is concluded that this structure becomes more ductile with increasing pressure up to 28 GPa. Moreover, our compressional and shear wave velocities VP = 7.02 km/s and VS = 3.84 km/s, as well as elastic Debye temperature Θ = 563 K at 0 GPa compare favorably with the experimental values. The pressure dependences of band structures, energy gap and density of states are also investigated.  相似文献   

16.
We have performed density functional self-consistent calculations based on the full-potential augmented plane wave plus local orbital method with the local density approximation to investigate the structural, elastic and thermal properties of three spinel oxides: ZnAl2O4, ZnGa2O4 and ZnIn2O4. The computed ground state structural parameters, i.e. lattice constant, free internal parameter, bulk modulus and its pressure derivative, are in good agreement with the available theoretical an experimental works. Single and polycrystalline elastic parameters and their pressure dependence are calculated and compared with the previous theoretical results. Thermal and pressure effects on some macroscopic properties of ZnAl2O4, ZnGa2O4 and ZnIn2O4 are predicted using the quasi-harmonic Debye model in which the lattice vibrations are taken into account. We have computed the variations of the lattice constant, bulk modulus, volume expansion coefficient, heat capacities and Debye temperature with pressure and temperature in the ranges of 0–30 GPa and 0–1600 K.  相似文献   

17.
The structural, electronic, elastic and thermal properties of two lutatium mono-pnictides (LuAs and LuSb) have been studied using the density functional theory within the generalized gradient approximation. The calculations indicate that there is a structural phase transition from their ambient NaCl – (B1) to CsCl – (B2) structure at 56.7 and 25.2 GPa along with the volume collapse percentage of 3% and 5%, respectively. Structural parameters like lattice constant (a0), bulk modulus (B) and pressure derivative of the bulk modulus (B′) are presented. The calculated band structures indicate that B1 and B2 phase of these compounds are metallic. We have calculated the second order elastic constants for these compounds. We also compare the ground state (a0 and B) and high pressure phase transition (Pt) properties for three members of lanthanide series.  相似文献   

18.
采用第一性原理方法,研究了Ti_2SiC在高压下的结构、弹性和电子性质。结果表明,随着外压的增大,Ti_2SiC的晶格常数a、c和体积V均减小,且a比c减小幅度更大,表明Ti_2SiC在a轴方向比c轴方向更容易被压缩,体现了该材料的各向异性。计算分析了Ti_2SiC的弹性常数、体模量、剪切模量、杨氏模量、泊松比等弹性性质,这些弹性性质均随着外压的增加而增大,并根据弹性常数证明了Ti_2SiC在0~50GPa范围内均是力学稳定的。此外,还从电子态密度的角度考察了Ti_2SiC的电子性质,认为其具有共价键和金属键的双重性质,并发现在0~50GPa范围内压力对Ti_2SiC的态密度性质影响较小。  相似文献   

19.
A novel superhard carbon allotrope C64 is predicted which is composed of C28 cages. It is porous and exhibits distinct topologies including zigzag 5, 6, 8, 10 and 12-fold carbon rings. The elastic constants and phonon calculations reveal that C64 is mechanically and dynamically stable at ambient pressure. The hardness of C64 is 60.2 GPa. The tensile and shear strength calculations indicate that the lowest tensile and shear strengths have the almost same value of 48.1 GPa. For the electronic properties, the band structure calculations show that C64 is a quasi-direct band gap semiconductor with a band gap of 1.32 eV.  相似文献   

20.
Theoretical investigation on TbTe for its structural, electronic, magnetic, and thermodynamic stuffs has been carried within density functional theory (DFT) as implemented in WIEN2K code. TbTe was found stable in ferromagnetic phase. The calculated ground-state parameters were found in a good agreement with the experimental data. The compound was found to have a structural stability in cubic B1 (NaCl-type structure) phase, but under the application of high pressure (at 27 GPa), it undergone to B2 (CsCl-type structure) phase of pressure. The second-order elastic constants and mechanical properties like Young’s modulus, Shear modulus, Poisson ratio, Cauchy pressure (C12C44), and Pugh’s ratio (B/G) were calculated. The present calculations confirmed the ductile nature of TbTe. Further, the thermodynamic investigations have been carried using quasi-harmonic Debye approximation. We have calculated the pressure and temperature dependence of Debye temperature (??D), bulk modulus (B), thermal expansion (α), heat capacities (CV), and entropy (S) in the temperature range of 0 to 1000 K and pressure range of 0 to 25 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号