首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis and optical properties of TiO2 nanoparticles   总被引:1,自引:0,他引:1  
Ultrafine TiO2 particles have been synthesized successfully by a facile gas flame combustion method. The synthesized sample is characterized by X-ray diffraction (XRD), transmission electron micrograph (TEM), Fourier transform infrared (FTIR), and photoluminescence (PL) spectroscopy. The as-prepared TiO2 nanoparticles appear to be a single anatase crystalline phase and the diameter is about 9 nm. Besides a sharp emission at 398 nm originating from the radiative annihilation of excitions, a weak broad band at about 434 nm from the defect-related emission is also discussed.  相似文献   

2.
Hoda S. Hafez 《Materials Letters》2009,63(17):1471-1474
Highly-active anatase TiO2 nanorods have been successfully synthesized via a simple two-step method, hydrothermal treatment of anatase/rutile titanium dioxide nanoparticle powder in a composite-hydroxide eutectic system of 1:1 M KOH/NaOH, followed by acid post-treatment. The morphology and crystalline structure of the obtained nanorods were characterized using XRD, TEM, SEM/EDX and BET surface area analyzer. The obtained TiO2 nanorods have a good crystallinity and a size distribution (about 4-16 nm); with the dimensions of 200-300 nm length and of 30-50 nm diameter. Compared with its precursor anatase/rutile TiO2 nanoparticles and the titanate nanotubes, the pure anatase TiO2 nanorods have a large specific surface area with a mesoporous structure. The photocatalytic performance of the prepared nanorods was tested in the degradation of the commercial Cibacrown Red (FN-R) textile dye, under UV irradiation. Single-crystalline anatase TiO2 nanorods are more efficient for the dye removal.  相似文献   

3.
Mesoporous anatase TiO2 nanopowder was synthesised by the sol–gel method using ultrasonic irradiation. This method is simple and faster for the synthesis of phase pure mesoporous anatase TiO2 nanopowder. The product is characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron spectroscopy (TEM), thermo gravimetric analysis, Brunauer–Emmett–Teller (BET) surface area, UV–visible diffuse reflectance spectroscopy and Fourier transform infrared spectroscopy. Analysis of XRD patterns, SEM and TEM image shows that the average particles size is of 19.9 nm and has an anatase structure. The mesoporous nature was determined by the BET method using the Barrett–Joyner–Halenda (BJH) model.  相似文献   

4.
Anatase-TiO2 nano-particles have been synthesized by using long-carbon chain carboxylic acid and titanium tetrachloride (TiCl4). As-prepared powder has been calcined at 500 °C to obtain highly crystalline TiO2. Broad X-ray diffraction (XRD) pattern of as-prepared as well as calcined powder showed all prominent peaks for tetragonal crystal structure representing anatase-TiO2. The particle diameter by applying Scherrer formula was found to be about 20 nm. It was possible to load as-prepared particles in poly vinyl alcohol (PVA) for optical studies. Optically transparent film showed sharp absorption band for TiO2 nano-particles at ∼ 300 nm. Photoluminescence (PL) studies of the solution showed emission wavelength at about 330 nm. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) revealed that the particles in the film have uniform distribution and even for the powder no agglomeration was observed. Thermal analysis (TGA) showed that the stability of host polymer is enhanced. FTIR spectra showed presence of carboxylate functional group in the powder.  相似文献   

5.
This paper reports on structural and optical properties of Co (0, 3, 5 & 7 mol%) doped TiO2 (titania) nanoparticles (NPs) synthesized by employing acid modified sol–gel method. The crystalline phase of the pure and doped NPs was observed with X-ray diffraction (XRD) followed by Raman scattering technique. Field emission scanning electron microscope and transmission electron microscopy give the morphological details. Fourier transform infrared spectra indicate the bonding interactions of Co ions with the titania lattice framework. Optical studies were attained with UV–visible absorption and fluorescence emission spectroscopy. XRD analysis reveals that all prepared samples have pure anatase phase with tetragonal symmetry devoid of any other secondary phase. The average crystallite size of all samples was calculated using Scherrer’s formula and was found to vary from 8 to 10 nm with doping concentration of Co. The Raman spectroscopy further confirmed the formation of TiO2 in anatase structure in both pure and Co doped TiO2 NPs. The most intense Raman active Eg peak of TiO2 NPs shifted to higher energy on doping. Both UV–visible and fluorescence spectra show a blue shift in their absorption and band edge emission subsequently on increasing with Co percentage in titania host matrix, wherever there is an indication of quantum confinement effect with widening of band gap on decreasing in NPs size. There is also a possibility of strong Coulomb interaction effect on the optical processes involving the Co ions. However, the intensities of different emission spectra are not the same but decrease profoundly for doping samples due to concentration quenching effect.  相似文献   

6.
Anatase TiO2 nanoparticles were synthesised by the sol–gel method in neutral medium, and its photocatalytic activity in the degradation of methyl orange dye under sunlight has been studied. The nanoparticles were characterised using high-resolution X-ray diffraction, high-resolution transmission electron microscopy, micro Raman analysis and diffuse reflectance spectroscopy. The blueshift and asymmetrical broadening associated with phonon confinement effect has been observed in the Raman spectra of pristine nanoparticles. The high temperature annealing of as prepared anatase samples resulted in the phase transformation in to rutile. The mixture of anatase and rutile TiO2 nanoparticles exhibited faster photocatalytic activity in the degradation of methyl orange than the pristine anatase and rutile phases. The significant enhancement in the photocatalytic activity of mixed TiO2 nanoparticles is due to the synergistic effects that consist of the antenna effect by the rutile phase and the activation effect by the anatase phase. Since method of preparation of the catalyst is comparatively simple and cost effective, and the energy source used is sunlight, the method can be easily implemented in waste water treatments.  相似文献   

7.
Anatase TiO2 coated multiwalled carbon nanotube (MWNT) nanocomposites were prepared by combining the sol-gel method with a self assembly technique at a low temperature. XRD, TEM, FTIR and XPS spectra were applied to characterize the crystal phase, microstructure, and other physicochemical properties of the sample. The results showed that MWNTs were covered with a 12-20 nm thickness layer of anatase TiO2 or surrounded by a 30 -290 nm thickness coating of anatase TiO2. The layer or coating is constructed of TiO2 nanoparticles about 5.8 nm. Furthermore, as-prepared composite was rich in surface hydroxyl groups.  相似文献   

8.
This paper presents the results of a study in which nanosized titanium dioxide (TiO2) crystal particles were coated onto the surface of palygorskite fibrous clay which had been modified by silver ions using titanium tetrachloride as a precursor. Coated TiO2 particles with the anatase structure were formed after calcining at 400 °C for 2 h in air. Various analytical techniques were used to characterize the surface properties of titanium dioxide particles on the palygorskite. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses showed that TiO2 particles were supported on the surface of the palygorskite clays and their size was in the range of 3–6 nm. The titanium oxide coatings were found to be very active for the photocatalytic decomposition of methylene blue.  相似文献   

9.

Herein, titanium dioxide (TiO2)-coated vertically aligned silicon nanowires (SiNWs/TiO2) were fabricated and evaluated for photocatalytic degradation of organic dyes. Aligned SiNWs arrays were prepared by facile metal-assisted chemical-etching process with varying the etching time that was followed by TiO2 nanoparticles coating using sputtering technique. The TiO2 film crystallized in pure anatase phase with an average crystalline size of 50 nm, as was elucidated with X-ray diffraction studies. SEM analysis showed nanowires with varying lengths from 2.5 to 13.5 µm and confirmed the homogenous surface decoration with TiO2. The homogeneous distribution of TiO2 nanoparticles on nanowires was co-evidenced with Energy-Dispersive X-ray spectroscopy (EDX) and Raman spectra analysis. The developed SiNWs/TiO2 was exploited for photocatalytic degradation of methylene blue; the role of hydrogen peroxide was also elucidated. The highest photocatalytic efficiency of 96% was achieved for SiNWs/TiO2 with optimum nanowire length of 3.5 μm. The developed photocatalyst was found to be almost stable even after 190 days (~?5 months) and could be used as reusable and easily removable photocatalysts. The current study highlighted the SiNWs/TiO2/H2O2 system as excellent candidate for water remediation applications.

  相似文献   

10.
A novel single-step synthetic method for the preparation of anatase N-doped TiO2 nanocrystalline at low temperature has been devoleped. The N-doped anatase TiO2 nanoparticles were synthesized by sonication of the solution of tetraisopropyl titanium and urea in water and isopropyl alcohol at 80 °C for 150 min. The as-prepared sample was characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and UV–vis absorption spectrum. The product structure depends on the reaction temperature and reaction time. The photocatalytic activity of the as-prepared photocatalyst was evaluated via the photodegradation of an azo dye direct sky blue 5B. The results show that the N-doped TiO2 nanocrystalline prepared via sonication exhibit an excellent photocatalytic activity under UV light and simulated sunlight.  相似文献   

11.
Nanostructured TiO2 particles were synthesized by sol-gel method with room temperature ionic liquid (RTIL) 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) as a reaction medium. The structure and morphology of TiO2 nanoparticles were characterized with X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). The as-prepared TiO2 nanoparticles present anatase crystal phase even without being calcined at high temperature, and show better photocatalytic performance in the degradation of methyl orange. The photocatalytic efficiency increases evidently along with increasing the concentration of nanostructure TiO2, and the degradation percent can reach 100% at the optimal catalyst concentration (2.0 g/L).  相似文献   

12.
The nano-crystalline B3+ and F? co-doped titanium dioxide films were successfully prepared by the improved sol–gel process. The as-prepared specimens were characterised using X-ray diffraction (XRD), high-resolution field emission scanning electron microscopy (FE-SEM), the Brunauer–Emmett–Teller (BET) surface area, X-ray photo-electron spectroscopy, photoluminescence spectra and UV–Vis diffuse reflectance spectroscopy. The photo-catalytic activities of the films were evaluated by degradation of an organic dye in aqueous solution. The results of XRD, FE-SEM and BET analysis indicated that the TiO2 films were composed of nano-particles. B3+ and F? co-doping could obviously not only suppress the formation of brookite phase but also inhibit the transformation of anatase to rutile at high temperature. Diffuse reflectance measurements showed that co-doping could clearly extend the absorbance spectra of TiO2 into visible region. Compared with pure TiO2, B3+ doped or F? doped TiO2 film, the B3+ and F? co-doped TiO2 film exhibited excellent photo-catalytic activity. It is believed that the surface microstructure of the films and the doping methods of the two ions are responsible for improving the photo-catalytic activity.  相似文献   

13.
N–I co-doped TiO2 nanoparticles were prepared by hydrolysis method, using ammonia and iodic acid as the doping sources and Ti(OBu)4 as the titanium source. The prepared catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and ultraviolet–visible diffuse reflection spectroscopy (UV–vis DRS). XRD spectra show that N–I–TiO2 samples calcined at 673 K for 3 h are of anatase structure. XPS analysis of N–I–TiO2samples indicates that some N atoms replace O atoms in TiO2 lattice, and I exist in I7+, I and I5+ chemical states in the samples. UV–vis DRS results reveal that N–I–TiO2 had significant optical absorption in the region of 400–600 nm. The photocatalytic activity of catalysts was evaluated by monitoring the photocatalytic degradation of methyl orange (MO). Compared with P25 and mono-doped TiO2, N–I–TiO2 powder shows higher photocatalytic activity under both visible-light (λ > 420 nm) and UV–vis light irradiation. Furthermore, N–I–TiO2 also displays higher COD removal rate under UV–vis light irradiation.  相似文献   

14.
《Materials Research Bulletin》2004,39(4-5):533-543
In this paper, 3.0 mol% lanthanide europium ion modified TiO2 sol (Eu3+–TiO2) was fabricated by chemical coprecipitation–peptization method with TiCl4 as precursor. Eu3+–TiO2 sol particles were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), transmission electron microscope (TEM) and particle size distribution (PSD). Eu3+–TiO2 sol particles prepared at low temperature (70 °C) had anatase semicrystalline structure. Eu3+–TiO2 sol sample homogeneously dispersed in the aqueous medium and presented narrow distribution characterization with 7 nm in mean size. Interfacial adsorption experiment shows that small particle size and positive charge of sol particles contributed to the good adsorption of X-3B dye on the TiO2 surface. The photoelectrochemical property was investigated about electrons transfer efficiency between dye molecule and TiO2 particles. A novel hydrosol reaction system was designed to conduct X-3B photodegradation reaction. The excellent photocatalytic activity for X-3B degradation under visible light irradiation was ascribed to effective scavenging electrons by Eu3+ ion. Moreover, X-3B photocatalytic degradation mechanism under visible light excitation was proposed as photosensitization–photocatalysis.  相似文献   

15.
TiO2 thin films for dyes photodegradation   总被引:1,自引:0,他引:1  
The aim of the present study is to investigate the influence of the TiO2 specific surface (powder, film) on the photocatalytic degradation of methyl orange. Porous TiO2 films were deposited on transparent conducting oxide substrates by spray pyrolysis deposition. The films were characterized by X-ray diffraction (XRD), Scanning Electronic Microscopy, and the UV-Vis spectroscopy. The XRD spectra of nanoporous TiO2 films revealed an anatase, crystalline structure that is known as the most suitable structure in photocatalysis. The average thickness of the films was 260 nm and the measured band gap is 3.44 eV. The influence of the operational parameters (dye concentration, contact time) on the degradation rate of the dye on TiO2 was examined. There were calculated the kinetic parameters and the process efficiency. Using thin films of TiO2 is technologically recommended but raises problems due to lowering the amount of catalyst available for the dye degradation.  相似文献   

16.
Using liquid phase deposition method on cellulose substrate, TiO2 nanofibres were prepared with TiCl4 as a precursor. TiO2 nanofibres were obtained after heat treatment of the cellulose template. The remaining product was composed of micron-size TiO2 fibres with a nanofiber microstructure. It is shown that nanofibres are formed through the aggregation of TiO2 nanoparticles. X-ray diffraction analysis of the as-prepared solution indicates the formation of crystalline TiO2 anatase phase. EDX analysis was employed to measure the adsorbed mass of TiO2 on cellulose substrate. The effect of deposition time on the growth and morphology was investigated by scanning electron microscopy. Transmission electron microscopy studies demonstrate fine microstructures composed of 10–15?nm?nanoparticles. Surface area of the TiO2 fibres, measured by Brunauer, Emmett and Teller analysis, was about 104?m2?g?1. Photodegradation of Rhodamine B as a standard dye shows that the prepared samples have a high photocatalytic activity due to large surface area.  相似文献   

17.
Spherical and nanoporous TiO2 and TiO2–SiO2 mixed micro-particles with four different compositions (20/80, 50/50, 80/20, 90/10 in weight ratio of TiO2/SiO2) were prepared by spray drying method from colloidal mixtures of amorphous silica and anatase titania nanoparticles. The as-prepared particles were heat-treated at 900 °C for 0.5–5 h. The TiO2 and TiO2–SiO2 particles were spherical in shape and the average particle diameter was about 1 μm. The anatase mass fraction and the specific surface area of TiO2–SiO2 (50 wt.% SiO2) mixed particles were kept to 61.5% and 30.6%, respectively, of their initial values after 5 h heat-treatment whereas these values of TiO2 particles were rapidly decreased to 13.0% and 1.2% of their initial values, respectively, within 30 min after heat-treatment. And the anatase mass fraction and specific surface area increased as SiO2 content in the TiO2–SiO2 mixed particles increased.  相似文献   

18.
Nanosized anatase TiO2 film on the ITO glass has been fabricated via spin coat process, with sodium dodecylbenzenesulfonate modified TiO2 nanoparticles, which is synthesized by a sol-hydrothermal method, and also characterized mainly by means of field emission scanning electron microscopy (FESEM). The results show that the as-prepared anatase TiO2 film exhibits superhydrophilic characteristic although it is not exposed to ultraviolet irradiation. The high roughness resulting from hierarchical surface structure is responsible for its superhydrophilicity. This work would provide a new route to fabricate newly nanostructured semiconductor films.  相似文献   

19.
Rare earth ion (Tb3+)-doped zinc ferrite (ZnFe2O4) nanoparticles grown on reduced graphene oxide (RGO) prepared through sol–gel method have been reported. During the sol–gel process, graphene oxide was reduced to RGO, and, subsequently, anatase TiO2 and cubic spinel ZnFe2?x Tb x O4 were grown in situ on the surfaces of the RGO nano-sheets. The structure, surface morphology and chemical composition of ternary nano-composites were studied using scanning electron microscopy, energy-dispersive X-ray, X-ray diffraction (XRD), Fourier transform infrared spectroscopy, photoluminescence spectra and vibrating sample magnetometer (VSM). XRD results showed that the produced TiO2 was composed of anatase and some rutile phases and ZnFe2O4 with a cubic spinel structure. The particle sizes of ZnFe2O4 and TiO2 nanoparticles were in the ranges of ~65–80 and ~17–20 nm, respectively. The saturation magnetization (M S) determined from VSM was found to linearly increase with Tb3+ concentration.  相似文献   

20.
Nanocrystalline TiO2 was synthesized by controlled hydrolysis of titanium tetraisopropoxide. The anatase phase was converted to rutile phase by thermal treatment at 1023 K for 11 h. The catalysts were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), Fourier-transform infrared absorption spectrophotometry (FT-IR) and N2 adsorption (BET) at 77 K. This study compare the photocatalytic activity of the anatase and rutile phases of nanocrystalline TiO2 for the degradation of acetophenone, nitrobenzene, methylene blue and malachite green present in aqueous solutions. The initial rate of degradation was calculated to compare the photocatalytic activity of anatase and rutile nanocrystalline TiO2 for the degradation of different substances under ultraviolet light irradiation. The higher photocatalytic activity was obtained in anatase phase TiO2 for the degradation of all substances as compared with rutile phase. It is concluded that the higher photocatalytic activity in anatase TiO2 is due to parameters like band-gap, number of hydroxyl groups, surface area and porosity of the catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号