首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanosized manganese oxides powders were potentiodynamically deposition onto the Pb substrates by anodic oxidation in 0.5 mol L−1 MnSO4 and 0.5 mol L−1 H2SO4 mixed solution at 40 °C. The chemical composition of the sample was determined by complex titration with ethylene diamine tetraacetic acid and redox titration. X-ray diffraction, scanning electron microscopy, cyclic voltammetry, and chronopotentiometry were employed to characterize the materials. The highest specific capacitance of the MnOx composite electrode was up to 420 F g−1 in 1.0 mol L−1 Na2SO4 electrolyte at the scan rate 5 mV s−1. The synthesized nanosized manganese oxide exhibited ideal capacitive behavior indicating a promising electrode material for electrochemical supercapacitors.  相似文献   

2.
Ball-nanostructured MnO2/MWCNTs composite was successfully prepared by microwave irradiation. The surface morphology and structures of the composite were examined by scanning electron microscope and X-ray diffraction. Multi-walled carbon nanotubes play a role as sustainment to inhibit MnO2 nanoplates from collapsing into nanorods. The electrochemical studies indicated that the composite had ideal capacitive performance and high specific capacitances of 298 F g− 1, 213 F g− 1 and 198 F g− 1 at the current density of 2 mA·cm− 2, 10 mA·cm− 2 and 20 mA·cm− 2, respectively. The formation mechanism of nanostructured MnO2/MWCNTs and the electrochemical behaviour of composites were discussed in detail.  相似文献   

3.
Lithium-ion intercalated compound λ-MnO2 was used as positive electrode in asymmetric supercapacitor with activated carbon used as negative electrode in 1 mol L− 1 Li2SO4 aqueous electrolyte solution. Phase composition, morphology and particle sizes of λ-MnO2 were studied by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). Electrochemical capacitive performance of the asymmetric supercapacitor was tested by cyclic voltammetry and galvanostatic charge-discharge tests. The results show that the asymmetric supercapacitor has electrochemical capacitance performance within wide potential range of 0-2.2 V. The specific capacitance is 53 F g− 1 at a constant current density of 10 mA cm− 2. The energy density is 36 W h kg− 1 with a power density of 314 W kg− 1. It is obvious that λ-MnO2 is a potential electrode material for asymmetric supercapacitor.  相似文献   

4.
A. Manzoli 《Thin solid films》2007,515(17):6860-6866
The negative potential sweep of a polycrystalline Au electrode in a solution containing 5 × 10− 4 mol L− 1 SeO2, 0.2 mol L− 1 Zn(ClO4)2 and 0.5 mol L− 1 HClO4 was analyzed at 0.05 V s− 1. The simultaneously collected voltammetric and nanogravimetric responses allowed to analyze the several electrochemical processes occurring in the studied range of potential, finishing with the formation of a thin film of ZnSe. The association of results obtained using both techniques was applied to identify the species involved in the AuO reduction as (AuO)2H2SeO3, which was desorbed during the oxide reduction with a mass variation much larger than that one observed in the supporting electrolyte. Initially, the Se(IV) reduction results in Seads coverage, followed by a further reduction to H2Se, which is a gas and desorbs from the electrode surface. Finally, the Zn(II) reduction inhibits the H2Se formation and generates a thin film of ZnSe, as the final coating. The strong dependence of the nature of reacting compound and the mass as well as the charge variations allowed to postulate a reaction mechanism.  相似文献   

5.
Photocatalytically active indium tin oxide thin film electrodes were prepared by electron beam evaporation technique onto a glass substrate having thickness 120 nm. Degradation of reactive dye yellow direct 42 has been performed using photoeletrocatalysis. A biased potential is applied across indium tin oxide photoelectrode illuminated by UV light. The best experimental conditions were found to be dye concentration 1.0 × 10− 5 mol L− 1, pH 5.25 and 0.5 mol L− 1 NaCl as supporting electrolyte when the photoelectrode was biased at + 0.5 V versus saturated calomel electrode. The effects of other electrolytes, dye concentration, pH solution, electrode annealing temperature and applied potentials have been also investigated and are discussed. Several common inorganic salts Na2SO4, Na2CO3, NaNO3 and NaCl were chosen to act as supporting electrolytes, which was added into the dye solution. It is shown that the charge-transfer resistance of photoanode can be calculated by the analysis of its electrochemical impedance spectroscopy, and the photoelectrocatalytic degradation rate of yellow direct 42 was inversely proportional to the value of charge-transfer resistance of photoelectrodes at different pH. The value of charge-transfer resistance is smaller, the higher its photoelectro-activity is.  相似文献   

6.
The preparation and electrochemical properties of 3D ordered nickel oxide/silicon microchannel plate (NiO/Si-MCP) array electrode materials for supercapacitors are studied. The Si-MCP fabricated by electrochemical etching is used as a 3D supporting structure for electrodes. The active NiO is synthesized by electroless plating of nickel on the surface of the Si-MCP followed by annealing under oxygen. The electrochemical properties of the NiO/Si-MCP nanocomposite electrode materials are studied using cyclic voltammetry (CV), chronopotentiometry, and electrochemical impedance spectroscopy (EIS) in a 2 M KOH solution. The results reveal typical electrochemical capacitive behavior in the potential range from −0.6 to 1.0 V. The specific capacitance of approximately 586.4 F g−1 decreases slightly with 4.8% loss after 500 cycles. The linear and symmetrical charge/discharge curves are measured by chronopotentiometry. The NiO/Si-MCP composite is a promising electrode material for integrated supercapacitors.  相似文献   

7.
Nanostructured nickel-manganese oxides composite was prepared by the sol-gel and the chemistry deposition combination new route. The surface morphology and structure of the composite were characterized by scanning electron microscope and X-ray diffraction. The as-synthesized NiO/MnO2 samples exhibit higher surface area of 130-190 m2 g−1. Cyclic voltammetry and galvanostatic charge/discharge measurements were applied to investigate the electrochemical performance of the composite electrodes with different ratios of NiO/MnO2. When the mass ratio of MnO2 and NiO in composite material is 80:20, the specific capacitance value of NiO/MnO2 calculated from the cyclic voltammetry curves is 453 F g−1, for pure NiO and MnO2 are 209, 330 F g−1 in 6 mol L−1 KOH electrolyte and at scan rate of 10 mV s−1, respectively. The specific capacitance of NiO/MnO2 electrode is much larger than that of each pristine component. Moreover, the composite electrodes showed high power density and stable electrochemical properties.  相似文献   

8.
H. Chen  S.Z. Wang 《Materials Letters》2009,63(20):1668-1670
LiFePO4/C composite with carbon core structure was successfully prepared by using araldite as carbon source. The microstructure and morphology of LiFePO4/C composite were confirmed by X-ray diffraction and transmission electron microscopic observation. The experimental results show that this structure is entirely different from carbon coating. The LiFePO4/C composite forms a common core structure in which carbon is used as line core and carbon core is covered by nano-LiFePO4 grains. Moreover, the LiFePO4/C composite exhibits higher tap density of 1.66 g cm− 3, shows higher capacity about 162 mAhg− 1 applied 30 mAg− 1 current, excellent cyclic ability and rate capability about 139 mAhg− 1 applied 700 mAg− 1 current at room temperature.  相似文献   

9.
The effect of grain size reduction on the electrochemical and corrosion behavior of iron with different grain sizes (32–750 nm) produced by direct and pulsed current electrodeposition were characterized using Tafel polarization curves and electrochemical impedance spectroscopy. The grain size of deposits was determined by X-ray diffraction analysis and scanning electron microscopy. The tests were carried out in an aqueous electrolyte containing 30 mg L−1 NaCl + 70 mg L−1 Na2SO4. Results obtained suggested that the inhibition effect and corrosion protection of sodium benzoate inhibitor in near-neutral aqueous solutions increased as the grain size decreased from microcrystalline to nanocrystalline. The improvement on the inhibition effect is attributed to the increase of the surface energy.  相似文献   

10.
A new kind of Co2SnO4-based electrode materials for supercapacitor was synthesized by co-precipitation method. The microstructure and surface morphology of Co2SnO4 were characterized by X-ray diffraction and scanning electron microscopy, respectively. Cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy were employed for the determination of specific capacitance and the equivalent series resistance of Co2SnO4/activated carbon composite electrode in KCl solution. It was shown that the composite electrode with 25 wt% Co2SnO4 had excellent specific capacitance up to 285.3 F g1 at the current density of 5 mA cm2. In addition, the composite electrode exhibited excellent long-term stability and, after 1000 cycles, 70.6% of initial capacitance was retained. Regarding the low cost, easy preparation, steady performance and environment friendliness, Co2SnO4/activated carbon composite electrode could have potentially promising application for supercapacitor.  相似文献   

11.
A sensitive and selective molecularly imprinted electrochemical sensor for p-nitrophenol detection has been developed based on ZnO nanoparticles/multiwall carbon nanotubes (MWNTs)-chitosan (CTS) nanocomposite. This nanocomposite was dripped onto an indium tin oxide electrode and then imprinted sol-gel solution was electrodeposited onto the modified electrode to construct the proposed sensor. The morphologies and electrochemical behaviors of the imprinted sensor were characterized by scanning electron microscope, X-ray diffraction, electrochemical impedance spectroscopy, square wave voltammetry and cyclic voltammetry. The imprinted sensor displayed excellent selectivity towards the target molecule p-nitrophenol. Meanwhile, the introduced nanocomposite increased surface area and active sites for electron transfer, thus remarkably enhancing the sensitivity of the imprinted sensor. Under optimal conditions, the peak current was linear to p-nitrophenol concentration ranging from 1.0 × 10− 8 to 2.0 × 10− 4 mol·L− 1 with a detection limits of 1.0 × 10− 9 mol·L− 1 (S/N = 3). This proposed sensor was applied to the detection of p-nitrophenol in various water samples successfully.  相似文献   

12.
A novel Self-catalytic Reverse Atom Transfer Radical Polymerization (RATRP) approach that can provide the radical initiator and the catalyst by the system itself is used to synthesize a nano-sized Li-Fe composite oxide powder in large scale. Its crystalline structure and morphology have been characterized by X-ray diffraction and scanning electron microscopy. The results reveal that the composite is composed of nano-sized LiFeO2 and Fe3O4. Its electrochemical properties are evaluated by charge/discharge measurements. The results show that the Li-Fe composite oxide is an excellent anode material for lithium-ion batteries with good cycling performance (1249 mAh g−1 at 100th cycle) and outstanding rate capability (967 mAh g−1 at 5 C). Such a self-catalytic RATRP approach provides a way to synthesize nano-sized iron oxide-based anode materials industrially with preferable electrochemical performance and can also be applied in other polymer-related area.  相似文献   

13.
Corrosion properties of a bulk Cu0.5NiAlCoCrFeSi glassy alloy such as electrochemical corrosion potential (ECP), potentiodynamic polarization, and weight loss measurements were carried out for the first time in 288 °C high-purity (outlet conductivity < 0.07 μS cm 1) water. The change of ECP with dissolved oxygen (DO) showed a sigmoid curve. In addition, the Cu0.5NiAlCoCrFeSi alloy exhibited a wide passive region and the passive current density was ∼ 2 × 10 4 A cm 2 in deaerated water containing 0.01 N sodium sulfate (Na2SO4) at 288 °C. A very low weight loss of ∼ 4.5 μg mm 1 was also found for the Cu0.5NiAlCoCrFeSi alloy after immersion in deaerated 288 °C water for 12 weeks.  相似文献   

14.
Nanostructured Mn-Ni-Co oxide composites (MNCO) were prepared by thermal decomposition of the precursor obtained by chemical co-precipitation of Mn, Ni and Co salts. The chemical composition and morphology were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM). The electrochemical capacitance of MNCO electrode was examined by cyclic voltammetry, impedance and galvanostatic charge-discharge measurements. The results showed that MNCO electrode exhibited the good electrochemical characteristics. A maximum capacitance value of 1260 F g−1 could be obtained within the potential range of −0.1 to 0.4 V versus saturated calomel electrode (SCE) in 6 mol L−1 KOH electrolyte.  相似文献   

15.
Gang Zhu 《Materials Letters》2010,64(16):1763-1765
δ-MnO2 was synthesized by a facile low-temperature hydrothermal method with a mixed system of KMnO4 and CO(NH2)2 at 90 °C for 24 h. The obtained product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 adsorption-desorption. Results showed that the as-synthesized product had a layered structure and a high specific surface area of 230 m2 g− 1. Electrochemical characterization indicated that the prepared material exhibited an ideal capacitive behavior with the initial capacitance value of 265 F g− 1 in 1 mol L− 1 Na2SO4 aqueous solution at a scan rate of 5 mV s− 1 and excellent cycling behavior.  相似文献   

16.
Birnessite-type MnO2/activated carbon nanocomposites have been synthesized by directly reducing KMnO4 with activated carbon in an aqueous solution. It is found that the morphologies of MnO2 grown on activated carbon can be tailored by varying the reaction ratio of activated carbon and KMnO4. An asymmetric supercapacitor with high energy density was fabricated by using MnO2/activated carbon (MnO2/AC) nanocomposite as positive electrode and activated carbon as negative electrode in 1 M Na2SO4 aqueous electrolyte. The asymmetric supercapacitor can be cycled reversibly in the cell voltage of 0–2 V, and delivers a specific capacitance of 50.6 F g−1 and a maximum energy density of 28.1 Wh kg−1 (based on the total mass of active electrode materials of 9.4 mg), which is much higher than that of MnO2/AC symmetric supercapacitor (9.7 Wh kg−1).  相似文献   

17.
A homogeneous composite of MnO2/multi-wall carbon nanotubes (MnO2/MWCNTs) was rapidly and efficiently synthesized by a redox reaction of MnO4 and Mn2+ on the MWCNTs under ultrasonic irradiation. The structure and morphology of the obtained MnO2 and MnO2/MWCNTs composite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and transmission electron microscopy. Electrochemical investigation indicated that the maximum specific capacitance of the MnO2/MWCNTs composite, measured by galvanostatic charge-discharge test, was 315 F g− 1, compared to the pristine MnO2 (192 F g− 1) and MWCNTs electrode (25 F g− 1), showing the synergistic effect of MWCNTs and MnO2. The homogeneous hybrid nanostructure and the good conductivity of MWCNTs were considered to be responsible for its preferable electrochemical performances.  相似文献   

18.
Nickel aluminide powders were prepared by direct electrochemical reduction of solid mixture of NiO–NiAl2O4 (Ni:Al = 1:1 in mol) precursor in molten CaCl2 at 850 °C. The reduction process of the solid oxide cathode was investigated by analyzing the intermediate products using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It reveals that nickel is preferentially reduced and it benefits to prevent aluminum leaving from the cathode. The products obtained at the constant cell voltage electrolysis of 3.0 V for more than 4 h were stoichiometric NiAl. The energy consumption could be as low as 6.1 kWh (kg-NiAl)−1 based on the applied cell voltage and the consumed electrolysis charge. Furthermore, the NiAl powders were made into a dense rod by spark plasma sintering (SPS) technique. The corrosion behaviors of the NiAl rod in 0.5 mol L−1 NaCl aqueous solution at room temperature were investigated by polarization curve and ac impedance measurements. It was found that the NiAl rod had satisfactory anti-corrosion ability in the solution.  相似文献   

19.
The horizontally aligned MoO2/single-walled carbon nanotube (MoO2/SWNT) composite has been prepared by electrochemically induced deposition method which utilizes the good electronic conductivity of SWNTs as supporting material to deposit MoO2. The morphology and crystal structure of the composite were investigated by X-ray photoelectron spectroscopy and scanning electron microscopy, respectively. The capacitive properties of the MoO2/SWNT composites have been investigated by cyclic voltammetry (CV). A specific capacitance (based on MoO2) as high as 597 F g− 1 is obtained at a scan rate of 10 mV s− 1 in 0.1 M Na2SO4 aqueous solution. Additionally, the MoO2/SWNT composites electrode shows excellent long-term cycle stability (only 2.5% decrease of the specific capacitance is observed after 600 CV cycles).  相似文献   

20.
Hongjun Yue 《Materials Letters》2008,62(19):3388-3390
Manganese oxide/carbon nanotubes (MO/CNTs) composite was prepared by hydrothermally reducing KMnO4 with CNTs, where the used CNTs are of dual role, i.e., they serve as reductant during reaction and the remaining CNTs act as conducting agent in the composite. This composite was characterized by X-ray diffraction and scanning electron microscopy techniques. In addition, the electrochemical performances of the composite were investigated, which suggested an excellent rate-capability of this material; e.g., it delivered a high discharge capacity as 131 mAh g− 1 at a high current density of 4 A g− 1 (20 C), and high capacity at low discharge current density, e.g., about 209 mAh g− 1 at 0.2 C rate. Therefore, such a MO/CNTs composite is promising in high power application of lithium battery and electrochemical capacitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号