首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In landing gear, an important mechanical component for high responsible applications, wear and corrosion control is currently accomplished by chrome plating or hard anodising. However, some problems are associated with these operations. Experimental results have also shown that chrome‐plated specimens have fatigue strength lower than those of uncoated parts, attributed to high residual tensile stress and microcracks density contained into the coating. Under fatigue conditions these microcracks propagate and will cross the interface coating‐substrate and penetrate base metal without impediment. Shot peening is a surface process used to improve fatigue strength of metal components due to compressive residual stresses induced in the surface layers of the material, making the nucleation and propagation of fatigue cracks difficult. This investigation is concerned with analysis of the shot peening influence on the rotating bending fatigue strength of hard chromium electroplated AISI 4340 steel. Specimens were submitted to shot peening treatment with steel and ceramic shots and, in both cases, experimental results show increase in the fatigue life of AISI 4340 steel hard chromium electroplated, up to level of base metal without chromium. Peening using ceramic shot resulted in lower scatter in rotating bending fatigue data than steel shots.  相似文献   

2.
The effects of partial surface shot peening on the fatigue crack growth behaviour of a ferritic steel have been experimentally investigated in this paper. Dog‐bone specimens fabricated from Optim700QL were tested under tension‐tension fatigue loads. Three distinct extents of partial shot peening, with respect to the crack tip and specimen symmetry line, were tested. The fatigue crack growth results from these experiments have been compared with those obtained from the same specimen geometry but with no peening. The results show that the residual stress fields formed ahead of the initial notch tip due to the partial peening process play a significant role in the fatigue crack growth behaviour of the material and effectively result in accelerated crack propagation at the midwidth of the specimens. It has been shown in this study that partial peening can lead to a fatigue crack growth rate around twice as fast as that of the unpeened specimen.  相似文献   

3.
Abstract

The present article provides a technical survey of the effects of shot peening conditions on the fatigue performance of Ti–6Al–4V specimens representative of the material (and the surface treatment) used in helicopter rotor hubs. As the effects of shot peening on non-plain surfaces have been fairly neglected in the scientific literature, the present work attempts to define the effects of shot peening on different specimens, featuring specific cross-section geometries, namely smooth and sharp edged specimens. Experimental tests also include measurements of the residual stress field caused by shot peening and the definition of the fatigue limit (by means of the ‘staircase method’) for all the tested specimen configurations. The present study proceeds with an optical and scanning electron microscopic investigation of the dynamics and causes of the different fatigue limits associated with the geometrical features. The present study conveys a strong correlation between specimen geometry and shot peening microstructural effects, resulting in different fatigue performances. The present work concludes that, whenever surface treatment is involved in the manufacturing process, the component’s design must be included, in addition to the required geometrical features for the operative conditions, an evaluation of how these provided features might affect the surface treatment outcome.  相似文献   

4.
A lot of research has been done to improve fatigue strength of materials by creating compressive residual stress field in their surface layers through shot peening. In this paper, fatigue strength of shot peened leaf springs has been calculated from laboratory samples. The axial fatigue strength of EN45A spring steel specimen is evaluated experimentally as a function of shot peening in the conditions used for full-scale leaf springs testing in industries. Optimum shot peening condition for specimen is found and S/N curves of the specimens are correlated with leaf springs curve. A mathematical model has been developed which predicts the fatigue life of leaf springs for a given stress at varying shot peening conditions. Predictions from this model are compared with experimental data. The estimation of fatigue life and relaxation of compressive residual stress field are discussed.  相似文献   

5.
喷丸强化对OCr13Ni8Mo2Al钢疲劳性能的影响   总被引:3,自引:0,他引:3  
研究了表面喷丸强化后表面残余应力、表面粗糙度和表面层残余压应力场对0Cr13Ni8Mo2Al钢疲劳性能的影响.结果表明:0Cr13Ni8Mo2Al钢经喷丸强化后,在表面层残余压应力场的作用下疲劳裂纹源由表面被"驱赶"到表面强化层下,疲劳寿命得到显著提高.  相似文献   

6.
Residual stresses play an important role in the fatigue lives of structural engineering components. In the case of near surface tensile residual stresses, the initiation and propagation phases of fatigue process are accelerated; on the other hand, compressive residual stresses close to the surface may increase fatigue life. In both decorative and functional applications, chromium electroplating results in excellent wear and corrosion resistance. However, it is well known that it reduces the fatigue strength of a component. This is due to high tensile internal stresses and microcrack density. Efforts to improve hard chromium properties have increased in recent years. In this study, the effect of a nickel layer sulphamate process, as simple layer and interlayer, on fatigue strength of hard chromium electroplated AISI 4340 steel hardness – HRc 53, was analysed. The analysis was performed by rotating bending fatigue tests on AISI 4340 steel specimens with the following experimental groups: base material, hard chromium electroplated, sulphamate nickel electroplated, sulphamate nickel interlayer on hard chromium electroplated and electroless nickel interlayer on hard chromium electroplated. Results showed a decrease in fatigue strength in coated specimens and that both nickel plating interlayers were responsible for the increase in fatigue life of AISI 4340 chromium electroplated steel. The shot peening pre-treatment was efficient in reducing fatigue loss in the alternatives studied.  相似文献   

7.
喷丸强化对0Cr13Ni8Mo2Al钢疲劳性能的影响   总被引:5,自引:0,他引:5  
研究了表面喷丸强化后表面残余应力,表面粗糙度和表面层残余应力场对0Cr13Ni8Mo2Al钢疲劳性能的影响,结果表明:0Cr13Ni8Mo2Al钢经喷丸强化后,在表面层残余应力场的作用下疲劳裂纹源由表面被“驱赶”到表面强化层下,疲劳寿命得到显著提高。  相似文献   

8.
采用高能喷丸方法使工业纯钛疲劳试样的表层实现纳米化,并进行了疲劳试验。结果表明,高能喷丸后其表层组织发生严重塑性变形并实现组织纳米化,是提高弯曲疲劳寿命的主要原因。扫描电子显微镜分析发现,疲劳裂纹源的位置主要呈现为表层和次表层两种情况。在相同应力水平下,疲劳裂纹源在次表层时疲劳寿命较长,而疲劳裂纹源在表面时疲劳寿命很短,相应的疲劳试样的表面损伤也比较严重。  相似文献   

9.
This work focuses on determining the effect of shot and laser peening on fretting fatigue in the Al 7075-T651 alloy. These surface treatments generate a residual compressive stress field near the treated surface where contact under fretting fatigue produces high stress levels. The fretting fatigue resistance of shot and laser peened specimens was assessed in a series of tests involving measurements of the residual stress field, residual stress relaxation under the action of cyclic loads, the friction coefficient, surface roughness and material hardness. The obtained results are compared with those for untreated specimens. The tests show the beneficial effect of the compressive residual stresses and the improvement that surface roughness causes in fretting fatigue life, especially in shot peened specimens. Another important effect observed, is the partial residual stress relaxation produced during the fretting fatigue tests.  相似文献   

10.
High-temperature corrosion fatigue, a combination of corrosion with a fatigue cycle, is an emerging generic issue affecting power generation and aero gas turbine engines and has the potential to limit component life. Historically, surface treatments, such as shot peening have been used to improve component life and have been optimised for fatigue response. Research into optimisation of shot peening techniques for hot corrosion and high-temperature corrosion fatigue has shown 6–8A 230H 200% coverage to provide overall optimum performance for nickel-based superalloy 720Li based on the limited data within this study. Utilisation of electron backscatter diffraction techniques, in combination with detailed assessment of corrosion products have been undertaken as part of this work. The resultant cold-work visualisation technique provides a novel method of determining the variation in material properties due to the shot peening process and the interaction with hot corrosion. Through this work it has been shown that all three shot peening outputs must be considered to minimise the effect of corrosion fatigue, the cold work, residual stress and surface roughness. Further opportunity for optimisation has also been identified based on this work.  相似文献   

11.
Linear bend splitting and linear flow splitting are innovative methods to produce bifurcated profiles with ultrafine grained (UFG) microstructures in an integral style. Linear bend split profiles exhibit high potential for lightweight applications, due to their bifurcations and the high strength of the ultrafine grained microstructures, which develop at the surface of the work piece. The presence of the ultrafine grained microstructure is accompanied by a duplication of hardness and strength and a markedly increase of the fatigue properties, compared to the untreated material. Because of their high strength, ultrafine grained materials exhibit increased potential for the formation of compressive residual stresses. Therefore, shot peening of ultrafine grained microstructures could result in an increased fatigue resistance. The results clearly show that shot peening, despite optimized shot peening parameters, does not lead to an increase of the fatigue resistance. Compared to the untreated ultrafine grained microstructure, the fatigue resistance of shot peened material is even lower. The lower fatigue resistance is probably caused by the roughness of the shot peened surface, which overcompensates the compressive residual stresses.  相似文献   

12.
Generally a clear beneficial effect of nitriding duration on resultant mechanical characteristics is reported in the literature. Considering the high energy cost in the competitive business environment, this work explores any opportunities to reduce nitriding duration while not sacrificing the resultant mechanical characteristics and fatigue behavior. To this end prior shot peening is applied with particularly severe parameters to generate ultra-fine grains and nano-structures in the surface layers. It was recently shown that the local fatigue strength improvement by combination of severe shot peening and 15 h nitriding could not eventually contribute in further increasing the fatigue limit of high strength low alloy steel smooth specimens as compared to only 15 h nitriding. In the present research combination of severe shot peening with nitriding at 7.5 h is assessed. It is affirmed that improvement by hybrid treatment can be actively exploited in the form of duration reduction. The characterization is carried out by optical and scanning electron microscopy observation, micro-hardness test, surface roughness measurement and X-ray diffraction measurement of residual stress. Fatigue limit of the treated specimens is experimentally determined. A critical comparison between the hybrid process with 50% nitriding duration reduction and the original nitriding process is presented. Based on the result of this study, nitriding duration can be successfully reduced without losing improvements in mechanical characteristics and fatigue behavior if a suitable prior severe shot peening, aimed to surface nano-crystallization, is performed.  相似文献   

13.
Abstract

The influence of shot peening on the fatigue properties of 0Cr13Ni8Mo2Al steel has been studied. Changes in surface roughness, surface topography and residual compressive stress field were determined by experiments. The experimental results show that shot peening improves the fatigue property and the fatigue crack sources are pushed to the region beneath the hardened layer. Low Almen intensities should be used when 0Cr13Ni8Mo2Al steel is shot peened because of its sensitiveness to the surface roughness.  相似文献   

14.
温飞娟  董丽虹  王海斗  吕振林  底月兰 《材料导报》2018,32(Z1):517-521, 528
喷丸强化能够有效提高42CrMo曲轴钢的抗疲劳性能,且喷丸数值模拟是制定喷丸工艺方案、评估喷丸后工件表面疲劳抗力的主要理论工具。为了体现喷丸过程中的随机性,利用MATLAB软件提供的Rand随机函数产生弹丸的位置,建立随机喷丸模型,并在此模型基础上研究弹丸直径、弹丸材料、冲击速度以及覆盖率与残余应力间的分布规律,进一步讨论喷丸工艺对42CrMo曲轴钢表面粗糙度的影响。研究发现:随着弹丸直径以及速度的增大,残余应力增大,抗疲劳性能提高,但粗糙度也相应增大;随着覆盖率的增大,残余应力增大,表面残余应力分布更加均匀,稳定性提高;同时弹丸强度越高,残余应力越大。通过喷丸试验对随机多弹丸模型进行验证,为喷丸工艺的精确控制提供了科学依据和理论基础。  相似文献   

15.
The so called “severe plastic deformation” (SPD) processes are object of increasing interest due to their ability to obtain a nanostructured surface layer of material with supposed superior properties. Among these processes, severe shot peening (SSP) is very attractive from an industrial point of view, due to its versatility and wide applicability.In this study the X70 microalloyed steel is considered and treated by severe shot peening.Fatigue tests were performed to assess how SSP treatment affects the fatigue behavior of this steel.Roughness and X-ray diffraction residual stress measurements as well as microscopy observations have been carried out on the treated specimens. Rotating bending fatigue tests at room temperature on smooth and notched specimens were performed to evaluate the effect of the treatment on fatigue strength. Fracture surfaces have been then observed by scanning electron microscopy. The results were compared with the ones of a series of not peened specimens and another series of specimens shot peened with conventional parameters and interpreted by considering the characteristics of the nanostructured layer, the induced residual stresses and the surface work hardening. The comparison shows a very significant fatigue strength improvement for severely shot peened specimens, especially for the notched specimens.  相似文献   

16.
The production of gear components includes numerous manufacturing operations which are carried out to ensure proper surface characteristics of components to deal with wear and fatigue. Surface shot peening is one way to increase the compressive residual stresses on the surface and thus ensure better wear and fatigue resistance. An experimental plan for shot peening was conducted to produce samples with varying surface characteristics. Residual stress profile and Barkhausen noise measurements were carried out for the samples. The objective of the study was to evaluate the interactions between the shot peening parameters studied, the residual stress profiles and the Barkhausen noise measurements. A multivariable regression analysis was applied for the task. Some remarkable correlations were found between the shot peening parameters, residual stress profile and Barkhausen noise features. The most important finding was that when the shot peening intensity was high enough, over 0.5 mmA, it dominated the shot peening coverage density parameter and thus no correlations could be gained. On the other hand, if the intensity parameter was lower than the limit of 0.5 mmA, the correlation between residual stress and Barkhausen noise measurements was remarkable. This means that the surface Barkhausen noise measurements could be used for the evaluation of the stress gradient in the shot peening process.  相似文献   

17.
A new mechanism modelling is proposed in this paper to explain the shot peening effect on fatigue life predictions of mechanical components. The proposed methodology is based on the crack growth analysis of shot peened specimens, which are affected by the interaction of surface roughness and residual stress produced during the shot peening process. An asymptotic stress intensity factor solution is used to include the surface roughness effect and a time‐varying residual stress function is used to change the crack tip stress ratio during the crack propagation. Parametric studies are performed to investigate the effects of surface roughness and the residual stress relaxation rate. Following this, a simplified effective residual stress model is proposed based on the developed mechanism modelling. A wide range of experimental data is used to validate the proposed mechanism modelling. Very good agreement is observed between experimental data and model predictions.  相似文献   

18.
The effect of shot peening on the plane bending fatigue strength of a 7.1 g/cm3 sintered Cr-Mo steel was investigated. Shot peening provides surface densification, strain hardening, compressive residual stresses up to −700 MPa, without impairing the dimensional and geometrical precision of specimens. Plane bending fatigue strength increases of 30%, irrespective to the different residual stress profiles obtained by changing the shot peening parameters. The improvement is mainly due to the surface densification and strain hardening.  相似文献   

19.
Effect of Surface Condition on Fatigue Strength of Die-Cast Aluminium Surface processing like milling or shot peening involves modifications of the surface and subsurface condition of a material that can be described by changes of the residual stresses, the hardness, and the surface roughness. Moreover, there is the possibility of introducing additional surface defects. In this paper the influence of these modifications on the fatigue behaviour of the aluminium die-casting alloy GD-AlSi8Cu3 is presented. S-N curves are determined for four surface conditions produced by milling, shot peening, and a combined treatment. The improvement of fatigue limit by shot peening is confirmed for this material. The additional effect of mean stresses is determined. Investigations of the fatigue fracture surfaces show that pores and pipes as well as surface defects induced by shot peening act as fatigue crack initiation sites.  相似文献   

20.
The objective of the study described in this article is to evaluate the effect of shakedown of surface compressive residual stresses introduced by shot peening on fatigue limit of stainless steel. First, the tension‐compression fatigue tests were conducted on ASTM CA6NM specimens under controlled load and displacement conditions to acquire a fatigue limit diagram under various compressive mean stress. The results showed that shakedown of negative mean stress occurs under controlled displacement. We then carried out in‐plane–bending fatigue tests under controlled load conditions on welded ASTM 309 stainless steel specimens with surface compressive residual stress introduced by ultrasonic shot peening. The results provide a fatigue limit of 415 MPa, which agrees with the value of 404 MPa calculated based on a modified Goodman line considering shakedown. Therefore, it is suggested that the surface layer is restricted by the internal bulk that creates controlled displacement conditions and the shakedown of surface compressive residual stress occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号