首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘伟  王若桢 《半导体学报》1994,15(2):83-88,T001
本文在p-i-n结构的InGaAs-GaAs应变层短周期超晶格的调制光反射谱中观察并确认了超晶格微带电子的Franz-Keldysh振荡,通过对Franz-Keldysh振荡的分析,推算出超晶格区内建电场大小;讨论了内建电场对超晶格微带电子的影响,最后指出Franz-Keldysh振荡可以作为检验短周期超晶格样品质量的一种手段。  相似文献   

2.
本文利用电解液电反射谱研究了In0.2Ga0.8As/GaAs短周期超晶格中微带电子态随电场的演化过程,不仅清楚地观察到弱场Franz-Keldysh效应和强场Wannier-Stark局域化效应,而且观察到了从弱场过渡到强场过程中Franz-Keldysh效应和Wannier-Stark局域化效应互相竞争的现象.  相似文献   

3.
硫钝化是一种比较有效的钝化GaAs表面的方法.本文使用Na2S、S2Cl2和CH3CSNH2三种化学试剂对表面本征层重掺杂层(sin+)结构的GaAs样品进行了钝化,利用光调制反射谱观察到许多个FranzKeldysh振荡,测量出本征层的电场强度,研究了GaAs表面硫钝化前后费米能级的变化,并且比较了各种钝化方法的钝化效果.  相似文献   

4.
用光调制光谱方法研究了逐层腐蚀的GaAS/Ga1-xAlxAs异质结,发现不同工的GaAs复盖层对异质结表面层电子能带有很大影响。由GaAs带间跃迁的Franz-Keleysh效应计算出表面层表面电场随外延层的变薄而增大,并计算出表面费密以级与导带底的距离f=0.27(0.03)eV,通过对Ga1-xAlxAs调制光谱分析,发现表面复盖层对Ga1-xAlxAs层的调制光谱线形有调节作用,不同厚度的  相似文献   

5.
郭儒  潘士宏 《中国激光》1995,22(1):55-59
在光折变多量子阱中,通过Franz-Keldysh效应可写入电吸收栅和电折变栅。基于二波耦合理论,精确求解了由这两种光栅引起的光强耦合方程,近似计算了Raman-Nath高阶衍射光强。  相似文献   

6.
我们研究了掺杂耦合GaAs/AlAs超晶格的级联隧穿,在这种结构中,AlAs层X能谷中的基态能级位于GaAs层中Γ能谷的基态(E(Γ1);)和第一激发态(E(Γ2))能级之间.实验结果证明,这种超晶格中的高电场畴是由Γ-X级联共振隧穿所形成的,而不是通常的相邻量子阱子带的级联共振隧穿所形成的.在这种高场畴中,电子从GaAs量子阱的基态隧穿到邻近的AlAs层的X能谷的基态,然后通过实空间电子转移从AlAs层的X能谷弛豫到下一个GaAs量子阱的Γ能谷的基态.  相似文献   

7.
利用高压光致发光方法在液氮温度下和0—35kar的压力范围内对不同层厚的GaAs/Al0.33Ga0.67As短周期超晶格以及具有相近组份的Al0.3Ga0.7As体材料进行了系统的研究.测得Al0.3Ga0.7As体材料的Γ谷和X谷的压力系数分别为8.6meV/kbar和-.57meV/kbar.在一定的压力范围内同时观测到了短周期超晶格中与类Γ态和类X态相关的发光峰,从而得到了类Γ态能级和类X态能级随压力的变化关系.首次获得了有关GaAs/Al0.33Ga0.67As短周期超晶格能带不连续性(包括价带  相似文献   

8.
首次用光伏方法研究了(GaAs/AlAs)n短周期超晶格中的超晶格类型及其转变问题.不同于其它方法,光伏方法仅涉及到载流子在实空间中的分离及其大小.这种空间分离在Ⅰ类超晶格中为零,而在Ⅱ类超晶格中不为零.(GaAs/AlAs)n短周期超晶格在n=10和11时被指认为Ⅱ类超晶格,在n=15时被指认为Ⅰ类超晶格.与其它大部分实验结果一致.  相似文献   

9.
基于Franz-Keldysh效应.提出了一种新型的提高(HgCd)Te探测器抗激光致盲能力的新方法,同时给出了利用这种新方法实现自动保护功能的简单方案.并通过实验加以验证.证明这一方法能够大幅度提高(HgCd)Te探测器的抗激光致盲能力。  相似文献   

10.
我们研究了掺杂耦合GaAs/AlAs超晶格的级联隧穿,在这种结构中,AlAs层X能谷中的基态能级位于GaAs层中Г能谷的基态(EГ1)和第一激发态(EГ2)能级之间,实验结果证明,这种超晶格中的高电场畴是由Г-X级联共振隧穿所形成的,而不是通常的相邻量子阱子带的级联共振隧穿所形成的,在这种高场畴中,电子从GaAs量子阱的基态隧穿到邻近的AlAs层的X能谷的基态,然后通过实空间电子转移从AlAs层的  相似文献   

11.
报道不同层厚的AlAs/AlxGa1-xAs及GaAs/AlxGa1-xAs短周期超晶格的纵光学声子模的室温喇曼散射测量结果.在非共振条件下,观察到AlAs/AlxGa1-xAs中限制在AlxGa1-xAs混晶层中的类GaAsLO限制模和限制在AlAs层中的AlAsLO限制模,还观察到GaAs/AlxGa1-xAs中限制在AlxGa1-xAs混晶层中的类AlAsLO限制模和限制在GaAs层中的GaAsLO限制模.在近共振条件下,还观察到了AlAs/AlxGa1-xAs中AlAs的界面模.根据线性链模型,把测量的LO限制模的频率按照q=mn+12πα0展开,给出了AlxGa1-xAs混晶的类AlAs支和类GaAs支光学声子色散曲线.  相似文献   

12.
用低压MOCVD(LP-MOCVD)生长三种不同的InGaAs/GaAs应变层量子阱材料,其中两种含AlGaAs限制层。结果表明,AlGaAs限制层对量子阱的发光强度影响很大,与没有AlGaAs限制层的结果相比,带AlGaAs限制层的结构的发光强度要强一个数量级以上。在低温(18K)PL光谱图中,我们看到,除了存在主峰以外,在主峰两侧还各有一个子峰,这些子峰可能与量子阱的质量有关。  相似文献   

13.
何礼熊 《半导体学报》1995,16(4):253-257
在71—163K的不同稳定温度下,对GaAs-Al0.3Ga0.7As调制掺杂异质结构界面的光激发过剩电子的浓度,作了10-5-103秒时间范围的瞬变测量.一个包含了热声子辅助隧穿,Si掺杂的AlxGa1-xAs层DX中心俘获势垒分布和隧穿后电子的能量弛豫过程的理论计算可以定量地解释实验结果.  相似文献   

14.
在GaAs/AlAs(10nm/2nm)弱耦合掺杂超晶格I-V曲线的第一个平台上,我们首先观测到了直流偏压下的室温微波振荡.观测到的最高振荡频率可达142MHz.这种由级联隧穿引起的振荡在测试温度范围14~300K内始终存在.经分析发现:由于垒层仅有2nm,电子隧穿通过垒层的几率很高,相比之下,电子越过势垒而产生的热离子发射电流要小得多.在温度低于300K时,超晶格内的纵向输运机制是级联共振隧穿和声子辅助隧穿.这是室温仍然能观测到自维持振荡的主要原因.由于实现振荡所施加的偏压比较低(在室温下偏压范围大约为  相似文献   

15.
通过对分子束外延(MBE)中影响GaAs、AlGaAs材料生长的一些关键因素的分析、实验与研究,得到了具有很好晶格完整性和高质量电学、光学特性的GaAs、AlGaAs单晶材料,实现了75mm大面积范围内的厚度、组分和掺杂等的很好均匀性.研制了高质量的GaAs/AlGaAs量子阱超晶格材料,并应用于量子阱激光器材料的研制,获得了具有极低阈值电流密度、低内损耗、高量子效率的高质量量子阶激光器外延材料.  相似文献   

16.
描述了一种新型共振隧穿结构器件,这种器件包含了通过可变间隙超晶格能量滤波器(VSSEF)中的耦合量子附态的隧穿过程.论证了通过AlAs/GaAsVSSEF器件高能态和AlGaAs/GaAs超晶格受激态的共振隧穿,描述了这种器件作为较高功率微波源和共振隧穿晶体管的应用,并讨论了共振隧穿结构作为雪崩探测器和红外发射器等光学器件的潜在应用.  相似文献   

17.
本文利用光调制光谱与分子束外延结合的方法,原位测量GaAs(001)表面Si-δ掺杂结构样品,排除了FK振荡对Si-δ掺杂相关的光谱结构的影响,观察到Si-δ掺杂结构中价带连续态到导带半V-形势阱中子带的跃迁及带间跃迁相对于纯GaAs带间跃迁的红移。  相似文献   

18.
B+注入n(Si)-GaAs层,经高温退火在GaAs晶格恢复过程中,B将占据GaAs晶格中一定位置成为替位B,当B取代As位,则形成双受主BAs.当B取代Ga位,并形成络合物BGaVAs,将促使Si占As位,形成受主SiAs和受主络合物BGaSiAs.由于所产生的受主与n型层中施主SiGa的补偿,减少了n型层的载流子浓度,即B的化学补偿效应.本文采用霍耳测量及光致发光测量对B的补偿行为进行分析.  相似文献   

19.
Ku波段8WGaAs内匹配微波功率FET李祖华(南京电子器件研究所,210016)Ku-Band8WGaAsInternallyMatchedMicrowavePowerGaAsFET¥LiZuhua(NanjingElectronicDevices...  相似文献   

20.
应变单量子阱InGaAs/GaAs的光谱研究沈文忠,唐文国,沈学础(中国科学院上海技术物理研究所,红外物理国家重点实验室,上海200083)近来,人们对InxGa1-xAs/GaAs应变超晶格和量子阱结构产生了浓厚的兴趣是基于高速器件设计的需要。随着...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号