共查询到17条相似文献,搜索用时 46 毫秒
1.
刘金颂 《上海电力学院学报》2010,(9)
提出了一种新的基于Zernike矩和粒子群(PSO)算法的摄像机BP神经网络标定方法。首先,利用Zernike矩和曲率不变性求取圆形标定模板中心的亚像素坐标,提高神经网络训练数据的精度;其次,利用PSO算法优化网络的初始权重和阈值,提高网络的收敛速度和泛化能力。实验结果表明,该方法在X轴和Y轴方向的测量误差小于0.06 mm,整个测试集均方根误差为0.194 mm,证明了该方法的有效性。 相似文献
2.
李岩 《黑龙江工程学院学报》2015,(1)
针对公路养护决策中存在的问题,以路面养护为例,借助LDR指数建立养护决策模型,利用粒子群优化算法(PSO)决策模型,对不同路面条件下公路养护决策进行优化分析。研究成果将对公路养护提供决策支持,并提出利于公路养护资金优化的方法。 相似文献
3.
基于PSO算法的电力系统稳定器参数优化 总被引:1,自引:0,他引:1
周敏 《重庆电力高等专科学校学报》2010,15(3):9-11
针对电力系统稳定器的参数优化问题,提出一种基于微粒群优化算法的整定方法。算法选择Δω作为输入信号,以ITAE指标作为微粒群优化算法的目标函数,对电力系统稳定器增益Ki和时间常数T1i、T3i三个参数进行优化设计。仿真结果验证了算法的有效性和优越性。 相似文献
4.
潘希姣 《安徽建筑工业学院学报》2007,15(2):38-40
为了使参加神经网络集成的个体差异度较大,从而提高网络集成的泛化能力,本文提出一种新的基于多子群粒子群算法的神经网络集成方法.每个子群通过补充差异度独立训练出一批神经网络,从每个子群中选择一个最优个体参加网络集成,实验使用了UCI标准数据集.实验证明,该算法的识别能力要好于Boosting、Bagging等传统方法. 相似文献
5.
为了解决管道泄漏检测与定位问题,采用基于粒子群算法的管道泄漏模型反问题方法求解泄漏点大小和位置,得到该方法在管道参数波动情况下的鲁棒性结果,对管道参数波动进行敏感度分析.由于管道泄漏模型采用偏微分方程描述,给出该模型求解的初始条件和边界条件,根据这些条件和已有实验平台仿真泄漏模型的稳态和动态状况.基于管道泄漏模型,对达西-威斯巴哈摩擦系数f和泄漏小孔的流通系数C1进行敏感度分析.在人为地增加参数扰动后,采用粒子群算法进行反问题求解.从搜索结果可以看出,参数的敏感性越强,粒子群算法对参数的鲁棒性越弱. 相似文献
6.
利用粒子群优化算法的全局搜索功能,进化设计神经网络的网络结构与连接权,得到一组独立的神经网络集成个体.利用主成份分析法提取其综合信息,再用支持向量机回归方法对其处理,生成神经网络的输出结果,以此建立股市预测模型.通过实例验证,该方法能有效提高神经网络集成的泛化能力,模型的预测精度高、稳定性好、具有应用推广前景. 相似文献
7.
为了使卷积神经网络在非经验指导下自动寻得最优连接,并提高其参数优化效率,提出用粒子群优化卷积网络参数,并用离散粒子群优化卷积网络特征图之间连接结构的新方法。先使用粒子群优化所有权值,再采用离散粒子群优化降采样层和卷积层之间特征图连接结构。将该方法用于MNIST数据集和CIFAR-10数据集,实验结果表明,相比其他连接结构的卷积神经网络和其他识别方法,该方法可以有效实现网络结构及参数的优化,加速网络收敛并提高识别准确比。 相似文献
8.
基于蚁群算法的选择性神经网络集成方法 总被引:1,自引:0,他引:1
为选择差异度较大、精确度较高的神经网络个体组建神经网络集成,提高神经网络集成的性能,提出一种新的选择性神经网络集成构造方法.该算法采用蚁群优化算法在独立训练的神经网络个体中选择部分组建网络集成,在蚁群优化过程中神经网络个体被选择的概率由信息素和启发因子决定,信息素反映当前神经网络个体的精确度,启发因子反映神经网络个体间的差异度,能有效提高系统的搜索效率和预测精度.实验结果表明,该算法构造的神经网络集成使用了较少的网络个体,而预测误差均好于传统的Bagging和Boosting算法. 相似文献
9.
基于粒子群算法的RBF神经网络的优化方法 总被引:1,自引:0,他引:1
本文用粒子群算法来优化RBF神经网络的中心值和连接权值,使之具有更强的非线性逼近能力,并将优化后的RBF神经网络和未经优化的RBF神经网络用于非线性函数的逼近,实例证明优化后的RBF神经网络比未经优化的RBF神经网络具有更强的非线性函数的逼近能力。 相似文献
10.
传统的自适应均衡算法存在收敛速度慢,稳定性差、均衡效果不理想等缺点,从而使自适应均衡器在高速光纤通信系统中的应用受到限制.具有梯度搜索因子的Grads-PSO算法,结合了传统数值优化方法在计算速度和计算精度上的优势,将梯度法引入粒子群算法中.在梯度搜索因子的指导下,PSO算法的运算过程显得更加有规则,从而提高了算法的收敛速度和运算精度.因此,本文提出将改进PSO算法用作自适应均衡器均衡算法.通过仿真实验表明,改进PSO算法具有收敛速度快,计算精度高的优点,将其作为自适应均衡器的控制算法可收到很好的均衡效果,优于传统的控制算法. 相似文献
11.
基于免疫粒子群优化的一种动态递归神经网络辨识与控制非线性系统 总被引:1,自引:1,他引:1
提出了一种采用免疫粒子群优化算法对动态递归神经网络进行训练的方法,实现了对Elman网络的结构、权重、结构单元的初始输入和自反馈增益因子等参数的同时进化训练。进而针对非线性系统分别提出了相应的辨识与控制算法,并设计出了相应的辨识器和控制器。最后以超声马达为对象进行了仿真,结果表明:基于所提出的算法而设计的辨识器和控制器在辨识和控制过程中不仅都能取得很高的收敛精度和速度,而且对于随机扰动有较强的鲁棒性,从而为非线性系统的辨识和控制提供了一条新的途径。 相似文献
12.
人工神经网络及粒子群优化算法在跟驰模型中的应用 总被引:2,自引:2,他引:2
在车辆跟驰现象中,驾驶员-车辆系统可视为一个非线性的动态系统,而人工神经网络(ANN)是开发非线性系统模型的有效工具,采用ANN技术建立了车辆跟驰模型,开发了基于粒子群优化(PSO)算法的ANN训练算法。测试结果表明,基于神经网络的跟驰模型比传统模型具有更强的鲁棒性,基于PSO算法的ANN训练方法能够避免陷入局部最优。 相似文献
13.
Transmission network planning (TNP) is a large-scale, complex, with more non-linear discrete variables and the multi-objective constrained optimization problem. In the optimization process, the line investment, network reliability and the network loss are the main objective of transmission network planning. Combined with set pair analysis (SPA), particle swarm optimization (PSO), neural network (NN), a hybrid particle swarm optimization model was established with neural network and set pair analysis for transmission network planning (HPNS). Firstly, the contact degree of set pair analysis was introduced, the traditional goal set was converted into the collection of the three indicators including the identity degree, difference agree and contrary degree. On this bases, using shi(H), the three objective optimization problem was converted into single objective optimization problem. Secondly, using the fast and efficient search capabilities of PSO, the transmission network planning model based on set pair analysis was optimized. In the process of optimization, by improving the BP neural network constantly training so that the value of the fitness function of PSO becomes smaller in order to obtain the optimization program fitting the three objectives better. Finally, compared HPNS with PSO algorithm and the classic genetic algorithm, HPNS increased about 23% efficiency than THA, raised about 3.7% than PSO and improved about 2.96% than GA. 相似文献
14.
基于神经网络和粒子群算法的移动机器人路径规划 总被引:1,自引:0,他引:1
针对移动机器人传统路径规划算法效率不高,寻优能力差等问题,提出一种基于神经网络和粒子群优化算法相结合的移动机器人路径规划方法.该方法利用神经网络实现大量的并行和分布计算,发挥PSO简单、容易实现的优点,提高了路径规划的计算效率和可靠性.仿真结果表明,这种新路径规划方法是可行且有效的. 相似文献
15.
通过实验筛选研发新药的过程非常缓慢且需耗费大量的人力物力,而利用计算机辅助预测药物的分子性质可极大地节省药物研发时间和成本.因此,为了能够使抗乳腺癌候选药物对抑制ERα具有良好的生物活性和ADMET性质,针对收集到的1 974种化合物,首先利用随机森林分类器筛选出前20个对生物活性最具显著影响的分子描述符,并以此和pIC50值作为特征数据建立QSAR模型.其次,基于PSO优化BP神经网络对50个新化合物的生物活性值进行预测,模型拟合度为0.833 7,根均方误差为0.731 5,比优化前的BP神经网络预测值更贴合实际.随后为提高药物研发的成功率,依据已有的ADMET性质数据利用PSO优化SVM构建ADMET分类预测模型,算法交叉验证CV准确率达到94.076 7%,5个指标模型的预测准确率均在79%以上.结果表明,所建立的模型比基准模型的预测性能更好,采用的预测策略是有效的,可为抗乳腺癌药物的研发提供借鉴. 相似文献
16.
17.
面向农作物精准施肥量确定问题,提出一种基于复杂网络聚类选择的神经网络集成方法。在该方法中,首先采用回放取样方法来生成多个神经网络个体,其次利用网络聚类算法FEC从这些神经网络个体集中选出部分个体,再次对选出的神经网络个体分别用线性加权方法和非线性方法进行集成,最后对两个集成结果进行融合得到预测结果。于2008年在吉林省榆树玉米试验田七号地对该方法进行了应用。实验结果表明:该方法不仅优于传统的施肥模型、神经网络线性加权集成和神经网络非线性集成方法,而且还具有较强的泛化能力。 相似文献