首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we present mass concentrations of particulate matter [PM2.5, PM10 size fractions and total suspended particulates (TSP)] measured simultaneously over land stations (Kullu, Patiala, Delhi, Ajmer, Agra, Lucknow, Varanasi, Giridih, Kolkata, Darjeeling, Jorhat, Itanagar, Imphal, Bhubaneswar, and Kadapa), mostly distributed across the Indo-Gangetic plain (IGP) of India as well as in the marine atmosphere over Bay of Bengal (BoB) in the period from 20 January to 3 February, 2014. The main objective of this study was to quantify the continental outflow of particulates (PM2.5, PM10 and TSP) from IGP and associated regions into the BoB along with low level north-east wind flow during winter monsoon period. The present study provides a glimpse of the aerosol loading over the IGP region. During this campaign, the highest average PM2.5 (187.8 ± 36.5 µg m?3, range 125.6–256.2 µg m?3), PM10 (272.6 ± 102.9 µg m?3, range 147.6–520.1 µg m?3) and TSP (325.0 ± 71.5 µg m?3, range 220.4–536.6 µg m?3) mass concentrations were recorded at Varanasi, Kolkata and Lucknow over middle and lower IGP regions. The PM2.5 (average 41.3 ± 11.9 µg m?3; range 15.0–54.4 µg m?3), PM10 (average 53.9 ± 18.9 µg m?3; range 30.1–82.1 µg m?3) and TSP (average 78.8 ± 29.7 µg m?3; range 49.1–184.5 µg m?3) loading over BoB were found to be comparable to land stations and suggests possible continental outflow. Over the continental region, the highest PM2.5/PM10 ratio was recorded at Delhi (0.87). The PM2.5/PM10 ratio over BoB (0.77) was found to be quite high and comparable to Varanasi (0.80) and Agra (0.79).  相似文献   

2.
Traditionally, the atmospheric particle composition is analyzed using destructive methods. In general, the destructive methods lead to the destruction of the samples, higher cost of the analysis and larger analysis time. In view of aforesaid, in current work, we present a method for the non-destructive analysis of atmospheric particles using open path-Fourier transform infrared spectroscopy (OP-FTIR). The developed method has been used for the measurement of ammonium and sulfate in atmospheric particles without destroying the samples. Here, we targeted the said species because of their relative importance for air pollution episode formation. Particulate sulfate plays a major role in formation of haze. However; particulate acidity is an important factor in this process, which is governed by particulate ammonium concentration. Therefore, both SO42? and NH4+ are important as far as atmospheric chemistry of haze formation is concerned. In the present study, the qualitative and quantitative estimation of ammonium and sulfate ions in PM2.5 (particulate matter with aerodynamic diameter less than 2.5 µm) was carried out using OP-FTIR with the developed method. The seasonal average concentration of NH4+ and SO42? were measured to be 12.00 ± 5.80, 31.71 ± 12.71 µg/m3 respectively for winters, 3.00 ± 0.85 and 8.00 ± 2.28 µg/m3 respectively for summers and 2.60 ± 1.90 and 7.00 ± 5.21 µg/m3 respectively for monsoon season. The observed results are found to be in good agreement with that of other studies using destructive methods.  相似文献   

3.
Mixing ratios of ambient NH3, NO and NO2 were measured in campaign mode at Kolkata a megacity of Indo-Gangetic plain of India to study the diurnal variation and mixing ratios of NH3, NO and NO2 during 24–27 February 2012. The present study has been carried out on campaign based measurement of mixing ratios of NH3, NO and NO2 for short period of time at Kolkata represent the indicative values over the region. The average mixing ratios of ambient NH3, NO and NO2 were recorded as 43.4 ± 7.0 ppb, 46.0 ± 8.7 ppb and 31.9 ± 5.5 ppb at Kolkata. In the present case, significant diurnal variation of NH3, NO and NO2 were recorded at Kolkata during study. Mixing ratio of ambient NH3 reaches its maxima (78.9 ppb) at night and minimum during daytime. Result reveals that the ambient NH3 mixing ratio is positively correlated with ambient NO (r 2 = 0.395) and NO2 (r 2 = 0.404) mixing ratio and significant negatively correlated with ambient temperature (r 2 = –0.669). Surface wind direction and wind speed analysis indicates that the local acitivities (livestock, drainage, agriculture, vehicles etc.,) may be the possible sources of ambient NH3 at the observational site of Kolkata.  相似文献   

4.
State Government of Delhi had adopted oddeven scheme on vehicles plying in megacity Delhi to understand and improve the air quality of Delhi. To understand the effect of odd–even scheme on the concentration of pollutants, we have analysed the concentrations of chemical constituents [organic carbon, elemental carbon, water soluble inorganic components, trace elements and stable carbon and nitrogen isotopic composition (δ13CTC) and N (δ15NTN)] of PM2.5 and PM10 along with mixing ratios of trace gases (NO x , CO, SO2 and NH3) data collected at an urban site of megacity Delhi during first phase (Phase-I: winter 2016) and second phase (Phase-II: summer 2016). During the Phase-I of the scheme, mass concentrations of PM2.5 and PM10 were changed by ?13 and ?5%, respectively, whereas, concentrations of PM2.5 and PM10 were changed by +18 and +16%, respectively during the Phase-II as compared to before the implementation of the scheme. The analysis of chemical constituents of PM2.5 and PM10 reveals that the odd–even strategy marginally changed the concentrations (markers) of vehicular emission. During both the phases, mixing ratios of trace gases (NO x , CO, SO2 and NH3) were reduced non-significantly during the odd–even scheme as compared to before the implementation of the scheme.  相似文献   

5.
A simulated wastewater containing phenol (1,000–2,500 mg/L), thiocyanate (SCN?) of 800 mg/L, COD (4,200–8,150 mg/L), and ammonia–nitrogen (NH4 +–N) of 500 mg/L was treated in a sequential anaerobic (B1)–anoxic (B2)–aerobic (B3) batch fed moving-bed reactor (MBR) system. Total hydraulic retention time (HRT) was varied from 5 to 10 days with B1 2.5 to 5 days; B2 and B3: 1.25–2.5 days each. In B1, 25–63 % of phenol and 23–53 % of COD removals were achieved and feed phenol above 1,500 mg/L, inhibited COD and phenol removals in B1. In B2, more than 90 % phenol removal was achieved along with COD removal and denitrification. In B2, with increase in phenol loading, though phenol and COD removal rates increased, SCN? removal rate decreased above phenol loading of 0.28 g/L day. In B3, NH4 +–N removal efficiency decreased above loading of 0.24 g NH4 +–N/L day. The overall efficiency of the fed batch MBR system was independent of feed phenol concentration up to 2,500 mg/L at constant total HRT of 6 days. NH4 +–N removal efficiency deteriorated significantly, when total HRT of fed batch MBR was less than 6 days. Modified Stover–Kincannon model showed the best fit for removal of substrates in three reactors and Haldane’s inhibition model predicted NH4 +–N removal in B3.  相似文献   

6.
Novel one-dimensional polyvinylpyrrolidone (PVP)/[Sr(NO3)2 + Mg(NO3)2 + TEOS + Eu(NO3)2 + Dy(NO3)2] composite fibers were prepared via electrospinning, and then it was calcined at high temperature to fabricate the long-persistent luminescence Sr2MgSi2O7:Eu2+, Dy3+ nanofiber by solid-state reaction under a reducing atmosphere. X-ray diffraction, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy and fluorescence spectrophotometer as well as afterglow brightness tester were used to characterize the resulting samples. The results revealed that diameter of the composite nanofibers decreased firstly and then increased with the increasing of the calcination temperature. FTIR analysis manifested that there was two new absorption peaks around 660 and 834 cm?1, which corresponded to Mg–O stretching and Sr–O stretching, when PVP/[Sr(NO3)2 + Mg(NO3)2 + TEOS + Eu(NO3)2 + Dy(NO3)2] composite nanofibers was calcined at the temperature of 1,100 °C, indicating that the crystalline Sr2MgSi2O7:Eu2+, Dy3+ had formed. Furthermore, its luminescence properties were tested. Upon excitation in the UV region, the emission spectra consisted of broad emission band, and the emission peak was located at the wavelength of 468 nm. Decay process contained both rapid-decaying and the slow-decaying processes, which due to the short survival time of the electro in Eu2+ and the deep trap energy center of Dy3+.  相似文献   

7.
LiFePO4/C composite nanobelts were synthesized by calcination of the [LiOH + Fe(NO3)3 + H3PO4]/polyvinyl pyrrolidone (PVP) electrospun nanobelts. PVP was used as the electrospinning template and carbon source. During the calcination, [LiOH + Fe(NO3)3 + H3PO4] were transformed to lithium iron phosphate (LiFePO4) and PVP was decomposed into carbon. The morphology and properties of the as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller (BET) specific surface area analysis, electrochemical impedance spectroscopy and galvanostatic charge–discharge measurements. The results indicate that the mean width of LiFePO4/C composite nanobelts is 2.50 ± 0.33 μm, the average thickness is about 162 nm and the BET specific surface area is 19.4 mg?1. The addition of carbon does not affect the structure of LiFePO4, but improves its electrochemical performances. At the current density of 0.2 C, the initial discharge capacity of LiFePO4/C electrode is 123.38 mAh g?1 and there is no obvious capacity fading after 50 cycles. The formation mechanism of LiFePO4/C composite nanobelts was also proposed.  相似文献   

8.
LiFePO4/C composite nanofibers were synthesized by calcination of the [LiOH + Fe(NO3)3 + H3PO4]/PVP electrospun nanofibers. Polyvinyl pyrrolidone (PVP) was used as the electrospinning template and carbon source. During the calcination [LiOH + Fe(NO3)3 + H3PO4] were transformed to LiFePO4 and PVP was decomposed into carbon. The morphology and properties of the as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller (BET) specific surface area analysis, electrochemical impedance spectroscopy and galvanostatic charge–discharge measurements. The results indicate that the mean diameter of as-prepared LiFePO4/C composite nanofibers is 179.08 ± 29.66 nm and the BET specific surface area is 66.59 m2 g?1. The addition of carbon does not affect the structure of LiFePO4, but improves its electrochemical performances. At the current density of 0.2 C, the initial discharge capacity of LiFePO4/C electrode is 133.6 mAh g?1 and there is no obvious capacity fading after 100 cycles. The formation mechanism of the LiFePO4/C composite nanofibers was also proposed.  相似文献   

9.
The effect of single-charged cations (Na+, K+, NH 4 + ) on the cesium sorption with mixed nickel potassium ferrocyanide sorbent based on hydrated TiO2 was studied. The K+ and Na+ ions exert no effect at their concentrations of up to 0.5 M; the Cs+ distribution coefficients from KCl and NaCl solutions are (1.1 ± 0.5) × 105 and (8 ± 3) × 104 mL g?1, respectively. The sorbent is highly specific to Cs+ in the presence of ammonium ions. The sorption mechanisms were studied. The concentration ranges in which Cs+ and NH 4 + are sorbed by independent mechanisms (Cs+, by the ferrocyanide phase; NH 4 + , by the phase of hydrated TiO2) and in which the Cs+ distribution coefficient decreases owing to competitive filling of the ferrocyanide phase with ammonium ions were determined. At cesium concentrations in solution exceeding 50 mg L?1, Cs+ and NH 4 + are absorbed jointly owing to coprecipitation in the mixed ferrocyanide phase in the pore space of the sorbent.  相似文献   

10.
Mixing ratio of ambient ammonia (NH3) was measured at various locations of the National Capital Region (NCR) of Delhi, India using a NH3-analyzer during January 2010 to June 2012 in campaign mode. The present study has been carried out on campaign based measurement of mixing ratios of NH3 and NO x for short period of time over the NCR of Delhi represent the indicative values over the region. The average mixing ratio of ambient NH3 was 20.9 ± 1.6 ppb during the period. The maximum average mixing ratio of ambient NH3 (28.8 ± 3.0 ppb) was recorded in an industrial area surrounded by intensive vehicular traffic followed by an agricultural farm (27.5 ± 2.1 ppb), whereas the minimum (6.4 ± 1.2 ppb) was recorded in the semi-urban area. The diurnal trend of NH3 depended on the ambient temperature at most of the sites and was affected by wind direction. Ambient NH3 was correlated with the NO x mixing ratio suggesting that the vehicular emission may be one of the sources of ambient NH3 in the NCR of Delhi. However, long-term measurements of ambient NH3 and their precursors will lead to seasonal variation of source apportionment over the NCR, Delhi, India.  相似文献   

11.
LiFePO4/C/Ag composite hollow nanofibers were synthesized by calcination of the coaxial electrospun nanofibers with polyvinyl pyrrolidone (PVP) as core and [LiOH + Fe(NO3)3 + H3PO4]/PVP/AgNO3 as shell. PVP was used as the electrospinning template and carbon source. During the calcination, LiFePO4 precursor was transformed to LiFePO4 while AgNO3 and PVP were decomposed into silver and carbon. The morphology and properties of the as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, BET specific surface area analysis, electrochemical impedance spectroscopy and galvanostatic charge–discharge measurements. The results indicate that the mean diameter of as-prepared LiFePO4/C/Ag composite hollow nanofibers is 154.5 ± 18.6 nm and the BET specific surface area is 119.14 m2 g?1. The addition of silver and carbon does not affect the structure of LiFePO4, but improves its electrochemical performances. At the current density of 0.2 C, the initial discharge capacity of LiFePO4/C/Ag hollow nanofibers electrode is 138.71 mAh g?1, which is higher than that of LiFePO4/C nanofibers electrode. The improved specific capacity may be attributed to increase electrode conductivity after the introduction of silver. The formation mechanism of the LiFePO4/C/Ag composite hollow nanofibers was also proposed.  相似文献   

12.
Reference materials of SO2, NO2 and CO were used to study the effects of different concentrations of NO2 and CO on the determination value of SO2 by flue gas analyzer with electrochemical sensors and UV differential optical absorption spectroscopy (DOAS). Results showed that SO2 was affected more greatly by NO2 than CO using the method of electrochemical sensors. The electrolytic reaction of NO2 was the primary factor causing the lowerconcentration of SO2. SO2 with the concentration of 0–300 mg/m3 was affected greatly by NO2, and the determination value was unreliable. The determination error of SO2, with the concentration higher than 1500 mg/m3, was about 2%, and the test value was more accurate. The method of UV DOAS could improve the determination reliability of concentration of SO2 greatly when NO2 coexisted.  相似文献   

13.
57Fe Mössbauer spectrum of conductive barium iron vanadate glass with a composition of 20BaO·10Fe2O3·70V2O5 (in mol%) showed paramagnetic doublet peak due to distorted FeIIIO4 tetrahedra with isomer shift (δ) value of 0.37 (±?0.01) mm s?1. Mössbauer spectra of 20BaO·10Fe2O3·xMoO3·(70???x)V2O5 glasses (x?=?20–50) showed paramagnetic doublet peaks due to distorted FeIIIO6 octahedra with δ’s of 0.40–0.41 (±?0.01) mm s?1. These results evidently show a composition-dependent change of the 3D-skeleton structure from “vanadate glass” phase, composed of distorted VO4 tetrahedra and VO5 pyramids, to “molybdate glass” composed of distorted MoO6 octahedra. After isothermal annealing at 500 °C for 60 min, Mössbauer spectra also showed a marked decrease in the quadrupole splitting (Δ) of FeIII from 0.70 to 0.77 to 0.58–0.62 (±?0.02) mm s?1, which proved “structural relaxation” of distorted VO4 tetrahedra which were randomly connected to FeO4, VO5, MoO6, FeO6 and MoO4 units by sharing corner oxygen atoms or edges. DC-conductivity (σ) of barium iron vanadate glass (x?=?0) measured at room temperature was 3.2?×?10?6 S cm?1, which increased to 3.4?×?10?1 S cm?1 after the annealing at 500 °C for 60 min. The σ’s of as-cast molybdovanadate glasses with x’s of 20–50 were ca. 1.1?×?10?7 or 1.2?×?10?7S cm?1, which increased to 2.1?×?10?2 (x?=?20), 6.7?×?10?3 (x?=?35) and 1.9?×?10?4 S cm?1 (x?=?50) after the annealing at 500 °C for 60 min. It was concluded that the structural relaxation of distorted VO4 tetrahedra was directly related to the marked increase in the σ, as generally observed in several vanadate glasses.  相似文献   

14.
The preparation and characterization (salient ones) of KAl (SO4)2. 12H2O, KCr (SO4)2·12H2O, mixed crystals of both with 10 to 90% of each component, mixed crystals of CsCl with CuCl2, doped crystals of KBr with K3FeCN6, mixed crystals (NH4)2SO4 with CuSO4 or NiSO4, NaCl with growth improver Pb+2, Mn+2, metallic crystals of Zn, Bi, ionic crystals of alkali halides with Pb+2, or Cd+2, etc. are presented. Instrumentation aspects of a rotary crystallizer, a homogeniser, an ingot release mechanism and a zone refiner are shown.  相似文献   

15.
Tb3+-doped LaOBr nanostructures including nanofibers, nanobelts, and hollow nanofibers were synthesized for the first time via calcinating the electrospun polyvinyl pyrrolidone/[La(NO3)3 + Tb(NO3)3 + NH4Br] composites. X-ray diffraction analysis revealed that LaOBr:Tb3+ nanostructures are tetragonal in structure with space group of P4/nmm. The morphologies and sizes of LaOBr:Tb3+ nanostructures were investigated using scanning electron microscope and transmission electron microscope. Under the excitation of 254-nm ultraviolet light, LaOBr:Tb3+ nanostructures exhibit the green emissions of predominant peak at 543 nm, which is ascribed to 5D4 → 7F5 transition of Tb3+ ions. It is found that the optimum doping concentration of Tb3+ ions in the LaOBr:Tb3+ nanofibers is 3 %. Interestingly, we found that the luminescence intensity of hollow nanofibers is obviously greater than that of nanofibers and nanobelts for LaOBr:Tb3+ under the same measuring conditions. Moreover, the luminescence of LaOBr:Tb3+ nanostructures are located in the green region in Commission Internationale de L’Eclairage chromaticity coordinates diagram. The formation mechanisms of LaOBr:Tb3+ nanofibers, nanobelts, and hollow nanofibers were also proposed. LaOBr:Tb3+ nanostructures are promising nanomaterials for applications in the fields of light display systems and optoelectronic devices.  相似文献   

16.
Strontium aluminates are important compounds with interesting properties such as long-duration phosphorescence and elastico-deformation luminescence. They have potential application in flexible light emitting panels. Since there are serious discrepancies in available thermodynamic data for these compounds, a redetermination of their Gibbs energies of formation was undertaken using solid-state electrochemical cells incorporating single-crystal SrF2 as the electrolyte in the temperature range from 1000 to 1300 K. However, the measurements were restricted to SrAl12O19 and SrAl4O7 because of the formation of strontium oxyfluoride phase between SrAl2O4 and SrF2. For the reactions, SrO + 6 Al2O3 → SrAl12O19, ΔG o/J mol?1 (± 280) = ?83386 ? 25.744 (T/K), and SrO + 2Al2O3 → SrAl4O7, ΔG o/J mol?1 (± 240) = ?80187 ? 25.376 (T/K). The high entropy of SrAl4O7 and SrAl12O19 can be partly related to their complex structures. The results of this study are consistent with calorimetric data on enthalpy of formation of other Sr-rich aluminates and indicate only marginal stability for SrAl4O7 relative to its neighbours, SrAl12O19 and SrAl2O4. The thermodynamic data explain the difficulty in direct synthesis of phase pure SrAl4O7 and the formation of SrAl2O4 as the initial ternary phase when reacting SrO and Al2O3 or crystallizing from amorphous state, irrespective of composition.  相似文献   

17.
Particulate matter is one of the most significant pollutants in indoor environments. The study of vertical profile concentration coefficients of different particulates leads us to figure out the most accurate pattern of vertical profile change of these hazardous particles. In this case, three different sizes of particulate vertical profile patterns, PM1.0, PM2.5, and PM10, were evaluated in indoors in the city of Karaj. Samplings of first and fourth floors of 5 buildings located in different areas of Karaj were conducted constantly during 2011. The results of Mahestan Station illustrate the highest average concentration of PM10 (173 µg/m3) whereas the RajaieShahr Station measurements indicates the highest average concentrations of PM2.5(66 µg/m3) and also PM1.0(51 µg/m3). Generally, the concentrations of the particulates in the first floors were higher than that in the fourth floors, and according to the air evaluation stations, all the particulates including PM1.0, PM2.5, and PM10 had concentrations higher than the annual standard.  相似文献   

18.
In order to accurately predict the types of biogenic iron hydroxysulfate precipitates in acidic, sulfate-rich environments facilitated by Acidithiobacillus ferrooxidans, different initial concentrations of Fe2 +, K+, Na+, and NH4+ are selected and tested in batch experiments for the formation of the precipitates. The critical equations of jarosite formation in FeSO4–K2SO4–H2O system or FeSO4–(NH4)2SO4–H2O system could be described as Y = ? 22120.8077 ? 0.04257x + 0.006170x2 (R2 = 0.9979) or Y = 0.03540 ? 0.002950x + 7.407E ? 5x2 (R2 = 0.9934), respectively, where Y is the threshold or critical values of the molar ratio of Fe/K or Fe/NH4 for jarosite formation, and x (mmol/L) is the initial concentration of Fe(II). Schwertmannite is the sole biogenic secondary ferric mineral when molar ratio of Fe/K or Fe/NH4 is higher than Y in the system with a given initial Fe(II) concentration. The precipitates are an admixture of schwertmannite and jarosite, or pure jarosite when the Fe/M molar ratio is lower than Y. The crystallinity of the secondary ferric minerals increased with the increase of initial Fe(II) concentration in the medium with a fixed K+ concentration. It is observed that the capacity of monovalent cation in promoting jarosite formation is K+ > NH4+ > Na+, as exhibiting that the capacity of K+ in this process is about 75 and 200 times greater than NH4+ and Na+, respectively. Obviously, both the initial concentration of Fe(II) and molar ratio of Fe to monovalent cation determine the types of biogenic iron hydroxysulfate precipitates.  相似文献   

19.
The influence of NH4 + on the preparation of carbonaceous spheres by a hydrothermal process was studied. A scanning electronic microscope and laser particle size analyzer were used to observe and measure the morphology and size distribution of the spheres. Fourier transform infrared spectroscopy was used to analyze the functional groups of the spheres. The results show that the addition of NH4 + has a significant influence on the morphology, size, and yield of the spheres. The slight addition of NH4 + greatly increases the diameter of the spheres and simultaneously improves their dispersion. With the change of NH4 + concentrations, the as-received spheres have sizes from 0.2 to 20 μm in diameter. The Fourier transform infrared spectroscopy results indicate that the C = O group disappears in the samples with NH4 + addition, different from the obvious peak at 1700.2 and 1305.6 cm?1 in the samples with no NH4 + addition. A possible mechanism of the formation and growth of the spheres with the addition of NH4 + is also proposed in the paper.  相似文献   

20.
A nanosized carbonaceous material was derived from bacterial cellulose (BC). BC, which is produced by bacteria as nanosized material, possesses high degree of crystallinity of 90 %, was pyrolysed at 950 °C and physically activated with CO2 to produce a nanosized activated carbon material. The pyrolysis of BC yielded a carbonaceous material (carbon yield of between 2 and 20 %) with a relatively low D- to G-band ratio (between 2.2 and 2.8), indicating that the carbonaceous material possesses a graphitic structure. Two different BC materials were pyrolysed—a loose fibrous (freeze-dried) and dense paper form. It was observed that a carbon nanofibre-like material was produced by the pyrolysis of the loose fibrous form of BC. The electric double layer (EDL) capacitance and the area-normalised specific capacitance in K2SO4 solution were as high as 42 F g?1 and 1,617 F cm?2, respectively. The EDL capacitance was also compared to commercially available activated carbon (YP-50F).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号