共查询到14条相似文献,搜索用时 62 毫秒
1.
2.
3.
中立型时标动力方程的振动性在理论上和应用中有着重要的意义.本文研究了一类二阶带混合型非线性项的中立型时标动力方程的振动性.首先,我们定义了中立项系数函数丌(t).当丌(t0)=∞时,利用广义李卡提变换技巧和均值技巧,建立了二阶中立型动力方程振动的一些新的判据.其次,当7r(t0)<∞时,通过加强假设条件及应用某些不等式和一些分析技巧,我们也得到了该方程振动的几个判据.我们的工作推广并改进了相关文献关于二阶中立型动力方程振动的结果.最后,作为应用给出两个实例说明所获定理的重要性. 相似文献
4.
5.
6.
一类一阶中立型非线性时滞差分方程的振动性 总被引:2,自引:0,他引:2
考虑一类一阶中立型非线性差分方程,在允许P(n)-1振动的情况下,获得了此方程所有解振动的若干充分条件,并给出了一些应用实例。 相似文献
7.
考虑一阶中立型方程共中P、Q∈C([t0,∞),R),τ>0,δ>0.我们获得了方程(1)的一切解振动的充分条件。本文结论改进了[4]中的主要结果,而且证明方法与之不同。 相似文献
8.
判定时间尺度上时滞动力方程的振动性和渐近性在数学物理、自动控制理论及工程、传染病模型分析和桥梁设计等诸多领域具有重要作用。针对时间尺度上具有次线性中立项的三阶 Emden-Fowler 时滞动力方程的振动性和渐近性开展研究,利用时间尺度上的微积分理论,广义 Riccati 变换和不等式技巧,获得了该方程两个振动定理,改进和推广了已有文献的相应结果,并给出了两个实例验证了新定理的有效性。 相似文献
9.
具有正负系数的二阶非线性中立型方程的非振动准则 总被引:6,自引:0,他引:6
中立型泛函微分方程的振动性在理论和应用中有着重要意义。本文研究了一类具有正负系数的二阶非线性中立型时滞泛函微分方程的振动性,利用Banach空间的压缩映象原理和一些分析技巧,建立了该方程非振动的一些新的准则,并给出了定理应用的例子。所得结论推广和改进了现有文献中的一系列结果。 相似文献
10.
一类非线性脉冲中立型时滞抛物方程组的振动准则 总被引:1,自引:1,他引:1
本文研究一类非线性脉冲中立型时滞抛物方程组的振动性,利用一阶脉冲中立型微分不等式,获得了该类方程组在两类不同边界条件下所有解振动的若干充分条件。所得结果充分反映了脉冲和时滞在振动中的影响作用。 相似文献
11.
考虑二阶拟线性中立型差分方程Δ[a_n|Δ(x_n p_nx_(n-r))|~(a-1)Δ(x_n p_nx_(n-r))] q_n|x_(n-σ)|~(a-1)x_(n-σ)=0,给出方程存在非振动解的必要条件和方程振动的充分条件。所得结果推广和改进了中立和时滞差分方程的许多结果。 相似文献
12.
用积分平均法和黎卡提技巧,对偶数阶带阻尼项非线性微分方程研究获得一些新的振动准则,这些结果改进和推广了一些已有文献的性质.最后,我们给出实例以阐述本文结果的有效性. 相似文献
13.
14.
研究一类非线性时滞双曲型偏泛函微分方程解的振动性,利用微分不等式方法和广义Riccati变换,获得了该类方程在第一类边值条件下振动的新的充分条件,所得结果通过实例加以阐明. 相似文献