首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pure tungsten oxide (WO3) and iron-doped (10 at.%) tungsten oxide (WO3:Fe) nanostructured thin films were prepared using a dual crucible Electron Beam Evaporation (EBE) technique. The films were deposited at room temperature under high vacuum onto glass as well as alumina substrates and post-heat treated at 300 °C for 1 h. Using Raman spectroscopy the as-deposited WO3 and WO3:Fe films were found to be amorphous, however their crystallinity increased after annealing. The estimated surface roughness of the films was similar (of the order of 3 nm) to that determined using Atomic Force Microscopy (AFM). As observed by AFM, the WO3:Fe film appeared to have a more compact surface as compared to the more porous WO3 film. X-ray photoelectron spectroscopy analysis showed that the elemental stoichiometry of the tungsten oxide films was consistent with WO3. A slight difference in optical band gap energies was found between the as-deposited WO3 (3.22 eV) and WO3:Fe (3.12 eV) films. The differences in the band gap energies of the annealed films were significantly higher, having values of 3.12 eV and 2.61 eV for the WO3 and WO3:Fe films respectively. The heat treated films were investigated for gas sensing applications using noise spectroscopy. It was found that doping of Fe to WO3 produced gas selectivity but a reduced gas sensitivity as compared to the WO3 sensor.  相似文献   

2.
The electrochromic (EC) properties of tungsten oxide (WO3), such as coloration efficiency, cyclic durability and reversibility strongly depend on the structural and morphological properties, which are influenced by the deposition method and parameters.This paper presents the steps for optimizing the deposition parameters (substrate temperature, air flow pressure and precursor solution molarity) for improving the optical and electrical properties of WO3 thin films for EC applications. WO3 thin films were deposited by spray pyrolysis using tungsten hexachloride (WCl6) dissolved in ethanol as precursor solution. The EC properties of optimized films were tested in two different electrolytes (H2SO4 1 M and acetic acid/sodium acetate buffer with pH = 4) and changes in structure, composition and morphology of the films after coloration/bleaching cycles were discussed.The deposition temperature, carrier gas pressure and solution molarity were optimized at 250 °C, 120 kPa and 0.14 M respectively. Under these condition a dense, uniform film, with homogenous distribution of particles, good adhesion to the substrate, low roughness (9.02 nm), high transparency (> 70% in the 500-1100 nm range) and conductivity was obtained. Transmission modulation is higher for the sample cycled in H2SO4 1 M (64% at 630 nm) compared to that cycled in the buffer (21% at 630 nm), whereas opposite results were obtained for coloration efficiencies 28 cm2 C− 1 (at 630 nm) and 35 cm2 C− 1 (at 630 nm), respectively. Changes in surface chemistry and morphology of the optimized sample were observed after cycling in H2SO4.  相似文献   

3.
R. Azimirad 《Thin solid films》2006,515(2):644-647
In this research, the effect of Fe2O3 content on the electrochromic properties of WO3 in thermally evaporated (WO3)1−x-(Fe2O3)x thin films (0 ≤ x ≤ 0.4) has been studied. The atomic composition of the deposited metal oxides was determined by X-ray photoelectron spectroscopy analysis. The surface morphology of the thin films has been examined by atomic force microscopy. The surface roughness of all the films was measured about 1.3 nm with an average lateral grain size of 30 nm showing a smooth and nanostructured surface. The electrochromic properties of (WO3)1−x-(Fe2O3)x thin films deposited on ITO/glass substrate were studied in a LiClO4 + PC electrolyte by using ultraviolet-visible spectrophotometry. It was shown that increasing the Fe2O3 content leads to reduction of the optical density (ΔOD) of the colored films and also leads to increasing the optimum coloring voltage from 4 to 6 V in which ΔOD shows its maximum values, in our experimental conditions. Furthermore, by using this procedure, it is possible to make an electrochromical filter which behaves similar to the colored WO3 film in the visible region, while it can be nearly transparent for near-infrared wavelengths, in contrast of the pure colored WO3 film.  相似文献   

4.
Tin doped indium oxide (ITO) and fluorine doped tin oxide (FTO) thin films have been prepared by one step spray pyrolysis. Both film types grown at 400 °C present a single phase, ITO has cubic structure and preferred orientation (4 0 0) while FTO exhibits a tetragonal structure. Scanning electron micrographs showed homogeneous surfaces with average grain size around 257 and 190 nm for ITO and FTO respectively.The optical properties have been studied in several ITO and FTO samples by transmittance and reflectance measurements. The transmittance in the visible zone is higher in ITO than in FTO layers with a comparable thickness, while the reflectance in the infrared zone is higher in FTO in comparison with ITO. The best electrical resistivity values, deduced from optical measurements, were 8 × 10−4 and 6 × 10−4 Ω cm for ITO (6% of Sn) and FTO (2.5% of F) respectively. The figure of merit reached a maximum value of 2.15 × 10−3 Ω−1 for ITO higher than 0.55 × 10−3 Ω−1 for FTO.  相似文献   

5.
N. Naseri  O. Akhavan 《Thin solid films》2010,518(8):2250-5907
In this investigation, the effect of gold nanocrystals on the electrochromical properties of sol-gel Au doped WO3 thin films has been studied. The Au-WO3 thin films were dip-coated on both glass and indium tin oxide coated conducting glass substrates with various gold concentrations of 0, 3.2 and 6.4 mol%. Optical properties of the samples were studied by UV-visible spectrophotometry in a range of 300-1100 nm. The optical density spectra of the films showed the formation of gold nanoparticles in the films. The optical bandgap energy of Au-WO3 films decreased with increasing the Au concentration. Crystalline structure of the doped films was investigated by X-ray diffractometry, which indicated formation of gold nanocrystals in amorphous WO3 thin films. X-ray photoelectron spectroscopy (XPS) was used to study the surface chemical composition of the samples. XPS analysis indicated the presence of gold in metallic state and the formation of stoichiometric WO3. The electrochromic properties of the Au-WO3 samples were also characterized using lithium-based electrolyte. It was found that doping of Au nanocrystals in WO3 thin films improved the coloration time of the layer. In addition, it was shown that variation of Au concentration led to color change in the colored state of the Au-WO3 thin films.  相似文献   

6.
Successive ionic layer adsorption and reaction (SILAR) method has been successfully employed for the deposition of cadmium oxide (CdO) thin films. The films were annealed at 623 K for 2 h in an air and changes in the structural, electrical and optical properties were studied. From the X-ray diffraction patterns, it was found that after annealing, H2O vapors from as-deposited Cd(O2)0.88(OH)0.24 were removed and pure cubic cadmium oxide was obtained. The as-deposited film consists of nanocrystalline grains of average diameter about 20-30 nm with uniform coverage of the substrate surface, whereas for the annealed film randomly oriented morphology with slight increase in the crystallite size has been observed. The electrical resistivity showed the semiconducting nature with room temperature electrical resistivity decreased from 10−2 to 10−3 Ω cm after annealing. The decrease in the band gap energy from 3.3 to 2.7 eV was observed after the annealing.  相似文献   

7.
Mixed V2O5–MoO3 thin films were deposited onto the glass and fluorine doped tin oxide (FTO) coated glass substrates, at 400 °C by pulsed spray pyrolysis technique (PSPT). Equimolar vanadium chloride (VCl3) and ammonium molybdate aqueous solutions were mixed together in volume proportions (5–15% molybdenum) and used as a precursor solution for the deposition of mixed V2O5–MoO3 thin films. The structural, morphological, optical and electrochromic properties of the films deposited at different Mo concentrations were studied. With increase in the percentage of Mo the peaks belonging to tetragonal phase of V2O5 eventually disappear and the (1 0 1) orthorhombic V2O5 phase is observed. Scanning electron microscopy (SEM) shows micro thread like reticulated morphology. The optical band gap energy varied over 2.91–2.85 eV. All the films exhibited cathodic electrochromism in lithium containing electrolyte (0.5 M LiClO4 + propylene carbonate (PC)). The highest coloration efficiency (CE) for the V2O5 film with 15% MoO3 mixing was found 35.27 cm2 C−1.  相似文献   

8.
Electrochromic tungsten oxide thin films were prepared by using an aqueous solution of Na2WO4·2H2O and dimethyl sulfate. Various techniques were used for the characterization of the films such as X-ray diffraction, cyclic voltammetry, SEM analysis and VIS-spectroscopy. The thin film durability was tested in an aqueous solution of LiClO4 (0.1 mol/dm3) for about 7000 cycles followed by cyclic voltammetry. No significant changes in the cyclic voltammograms were found, thus proving the high durability of the films.The optical transmittance spectra of coloured and bleached states showed significant change in the transmittance, which makes these films favorable for electrochromic devices.  相似文献   

9.
We have investigated the electrochromic properties of amorphous granular tungsten oxide (WO3 + δ) thin films with over-stoichiometric oxygen content (δ), using LiClO4 with propylene carbonate as an electrolyte. Different optical and electrochromic characteristics are observed with increasing δ. All the devices are electrochemically stable for more than 5000 color/bleach cycles without apparent degradation, and they have a faster response to coloration than to bleaching. WO3 + δ films with an optimized δ value show an optical modulation of 86% at a wavelength of 630 nm and the highest coloration efficiency ever reported of ~ 213 cm2/C. The δ-dependent coloration mechanism is discussed using the site saturation model. It is proposed that WO3 + δ films with the optimal δ value have favorable thickness and stoichiometry for the generation of Li+W+5 states.  相似文献   

10.
S.N. Alamri 《Vacuum》2009,83(6):996-1000
This study investigates the impact of high temperature and vacuum on the properties of WO3 powder during electron beam deposition and evaluates the consequential effects on the as-deposited films. Therein, the grain size and the crystallinity of the source were observed to increase and become non-stoichiometric tungsten oxide (WO3−x) due to the high temperature and vacuum during the first deposition. As a result of these changes in the source, the optical band gap, Eg, of the deposited film decreased from 3.11 eV to 3.07 eV, and the absorbance was observed to increase. The coloration efficiencies of the deposited films decreased from 23 to 16 cm2 C−1. WO3-incorporated carbon nanotubes (WO3/CNT) were observed in the source after electron beam deposition if there were some initial carbon impurities in the source prior to deposition.  相似文献   

11.
Titanium oxide (TiOx) thin films were prepared on transparent conducting substrate (fluorine-doped tin oxide) by cathodic electrolysis of a solution containing a titanium bis(ammonium lactato)dihydroxide and an ammonium nitrate at 323 K. Post-deposition treatment: calcination at 723 K or hot-water treatment at > 363 K promoted the growth of an anatase type crystalline phase in the TiO2 thin film, as evidenced by X-ray diffraction and X-ray photoelectron spectroscopy. The calcined films were used as electrodes of a dye-sensitized solar cells and the cells' energy conversion efficiency was comparable to that obtained with commercially available TiO2 nanoparticle electrodes.  相似文献   

12.
A high-performance fluorine-doped tin oxide (FTO) film was fabricated by flame-assisted spray deposition method. By varying the NH4F doping concentration, the optimal concentration was established as 8 at.%. X-ray diffractograms confirmed that the as-grown FTO film was tetragonal SnO2. In addition, the FTO film was comprised of nano-sized grains ranging from 40 to 50 nm. The heat-treated FTO film exhibited a sheet resistance of 21.8 Ω/? with an average transmittance of 81.9% in the visible region (λ = 400-800 nm). The figures of merit shows that the prepared FTO film can be used for highly efficient dye-sensitized solar cells electrodes.  相似文献   

13.
R. Azimirad  O. Akhavan 《Vacuum》2008,82(8):821-826
A simple method for synthesis of NaxWO3 nanowhiskers on tungsten thin films with 40 nm thickness sputtered on soda lime substrate as a source of sodium atoms has been reported for the first time. After heat treatment of the W thin films at 650 °C in N2 ambient for different times (15, 80 and 180 min), crystalline NaxWO3 nanowhiskers with [0 0 1] direction were obtained. scanning electron microscopy (SEM), X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS) and optical transmission/reflection measurements were employed to determine various properties of the grown nanowhiskers. Experimental results revealed that size and density of nanowhiskers were dependent on the annealing time and found that the 80-min heat treatment was a proper time for the growth of sodium-doped tungsten oxide nanowhiskers, in our experimental conditions. According to SEM observations, the synthesized nanowhiskers have 70-300 nm in width and 1-10 μm in length. It was also observed that by increasing the heating time to 180 min resulted in diffusion of the nanowhiskers into the substrate.  相似文献   

14.
Highly oriented (1 0 0) NaxWO3 thin films were fabricated in the composition range 0.1 ≤ x ≤ 0.46 by pulsed laser deposition technique. The films showed transition from metallic to insulating behaviour at a critical composition between x = 0.15 and 0.2. The pseudo-cubic symmetry of NaxWO3 thin films across the transition region is desirable for understanding the composition controlled metal-insulator transition in the absence of any structural phase transformation. The electrical transport properties exhibited by these films across the transition regime were investigated. While the resistivity varied as T2 at low temperatures in the metallic regime, a variable range hopping conduction was observed for the insulating samples. For metallic compositions, a non-linear dependence of resistivity in temperature was also observed from 300 to 7 K, whose exponent varied with the composition of the film.  相似文献   

15.
Different electrode materials are prepared using fluoride doped tin oxide (FTO) electrodes modified with high area porous thin films of metal oxides containing gold nanoparticles. Three different metal oxides (TiO2, MgO and SnO2) have been assayed to this end. The effect of the metal oxide nature and gold loading on the structure and performance of the modified electrodes was examined by Scanning Electron Microscopy, Transmission Electron Microscopy, X-Ray Diffraction (XRD), Diffuse Reflectance Spectroscopy and electrochemical techniques. XRD measurements reveal that MgO electrodes present the smallest gold nanoparticles after the sintering step however, the electrochemical response of these electrodes shows important problems of mass transport derived from the high porosity of these materials (Brunauer Emmett Teller area of 125 m2/g). The excellent sintering properties of titania nanoparticles result in robust films attached to the FTO electrodes which allow more reliable and reproducible results from an electroanalytical point of view.  相似文献   

16.
Tungsten oxide films have been successfully fabricated from tungsten oxychloride (WOCl4) precursor by using plasma enhanced vapor deposition (PECVD) technique. The films were deposited onto silicon substrates and ceramic tubes maintained at 100°C under a constant operating pressure of He-O2 gas mixtures. The compositions and the structures of the thin films have been investigated by means of anaysis methods, such as XRD, XPS, UV and IR. The as-deposited WO3 thin films were amorphous state and became crystalline after annealing above 400°C. The surface analysis of the films indicates that stoichiometry O/W is 2.77 : 1. The gas sensing measurements of the WO3 thin film sensors indicate that these sensors have a high sensitivity, excellent selectivity and quick response behavior to NO2.  相似文献   

17.
In this paper, we reported the successful preparation of fluorine-doped tin oxide (FTO) thin films on large-area glass substrates (1245 mm × 635 mm × 3 mm) by self-designed offline atmospheric pressure chemical vapor deposition (APCVD) process. The FTO thin films were achieved through a combinatorial chemistry approach using tin tetrachloride, water and oxygen as precursors and Freon (F-152, C2H4F2) as dopant. The deposited films were characterized for crystallinity, morphology (roughness) and sheet resistance to aid optimization of materials suitable for solar cells. We got the FTO thin films with sheet resistance 8-11 Ω/□ and direct transmittance more than 83%. X-ray diffraction (XRD) characterization suggested that the as-prepared FTO films were composed of multicrystal, with the average crystal size 200-300 nm and good crystallinity. Further more, the field emission scanning electron microscope (FESEM) images showed that the films were produced with good surface morphology (haze). Selected samples were used for manufacturing tandem amorphous silicon (a-Si:H) thin film solar cells and modules by plasma enhanced chemical vapor deposition (PECVD). Compared with commercially available FTO thin films coated by online chemical vapor deposition, our FTO coatings show excellent performance resulting in a high quantum efficiency yield for a-Si:H solar cells and ideal open voltage and short circuit current for a-Si:H solar modules.  相似文献   

18.
Gas-chromism in ultrasonic spray pyrolyzed tungsten oxide thin films   总被引:1,自引:0,他引:1  
A simple and inexpensive ultrasonic spray pyrolysis (USP) technique has been employed to deposit tungsten oxide (WO3) thin films by spraying 2.0 mM aqueous ammonium metatungstate solution onto the amorphous glass substrates kept at 250°C. The films were further annealed at 400°C for 4 h in air. X-ray diffraction (XRD) technique was used to determine the crystallinity and to identify the WO3 phases. It was found that the films were sub-stoichiometric, WO3-z. To study gas-induced properties, a catalyzing layer of platinum (Pt) was sputtered onto it. The gas-induced electrical and optical properties of Pt/WO3/glass samples were studied and results reported. It was found that electrical resistivity decreased by a factor of 10 within 2 min and stabilized after 15 min, after H2 gas exposure. Similarly the optical transmittance of the samples attenuated from 55% to 10% within 15–20 min. The reversible changes in electrical resistivity and optical transmittance were observed when the samples were exposed to oxygen. The response times and sensitivity of the samples were estimated.  相似文献   

19.
Lead titanate thin films were deposited by atomic layer deposition on Si(100) using Ph4Pb and Ti(O-i-Pr)4 as metal precursors and O3 and H2O as oxygen sources. The influence of the Ti : Pb precursor pulsing ratio on the film growth, stoichiometry and quality was studied at two different temperatures, i.e. 250 and 300 °C. Uniform and stoichiometric films were obtained using a Ti : Pb precursor pulsing ratio of 1 : 10 at 250 °C or 1 : 28 at 300 °C. The as-deposited films were amorphous but the crystalline PbTiO3 phase was obtained by rapid thermal annealing at 600-900 °C both in N2 and O2 ambient. Thin PbTiO3 films were visually uniform and roughness values for as-deposited and annealed films were observed by atomic force microscopy.  相似文献   

20.
New transparent conductive films, fluorine doped tin oxide (FTO) films coated on indium-tin-oxide (ITO) films, were developed. These transparent conductive films were prepared by the spray pyrolysis deposition method at a substrate temperature of 350 °C in ITO and 400 °C in FTO. For ITO deposition, an ethanol solution of indium(III) chloride, InCl3·4H2O, and tin(II) chloride, SnCl2·2H2O [Sn/(In+Sn), 5 at.%] was sprayed on a Corning #7059 glass substrate (100×100×1.1 mm3). After the deposition, FTO films were consecutively deposited for protecting oxidation of ITO films. FTO deposition was carried out by an ethanol solution of tin(IV) chloride, SnCl4·5H2O within the saturated water solution of NH4F. These new transparent conductive films achieved the lowest resistivity of 1.4×10−4 Ω cm and the optical transmittance of more than 80% in the visible range of the spectrum. The electrical resistance of these new transparent conductive films increased by less than 10% even when exposed to high temperatures of 300-600 °C for 1 h in the air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号