首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indium oxide and indium-cobalt oxide thin films have been successfully prepared by direct UV irradiation of amorphous films of β-diketonate complexes on Si(1 0 0) substrates. Deposited films were characterized by X-ray diffraction, Auger electron spectroscopy and X-ray photoelectron spectroscopy. The surface morphology of the films, examined by atomic force microscopy and scanning electron microscopy, revealed that mixed indium-cobalt oxide films are much smoother than In2O3 films, with rms surface roughness of 7.24 and 26.1 nm, respectively.  相似文献   

2.
A new heterogeneous catalyst (PVMo/Bentonite) consisting of vanadium substituted heteropolymolybdate with Keggin-type structure Na5[PV2Mo10O40]·14H2O (PVMo) supported between silicate layers of bentonite has been synthesized by impregnation method and characterized using X-ray diffraction, Fourier-transformed infrared spectroscopy, scanning electron microscopy, UV–vis diffuse reflectance spectroscopy, transmission electron microscopy and elemental analysis. X-ray diffraction and scanning electron microscopy analysis indicated that PVMo was finely dispersed into layers of bentonite as support. The PVMo/Bentonite used as an efficient heterogeneous catalyst for epoxidation of alkenes. Various cyclic and linear alkenes were oxidized into the corresponding epoxides in high yields and selectivity with 30% aqueous H2O2. The catalyst was reused several times, without observable loss of activity and selectivity. The obtained results showed that the catalytic activity of the PVMo/Bentonite was higher than that of pure heteropolyanion (PVMo).  相似文献   

3.
In this paper, we report on a nonaqueous synthesis of single crystalline anatase TiO2 nanorods by reaction between TiCl4 and benzyl alcohol at a low temperature of 80 °C. The resulting samples were characterized with X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high resolution transmission electron microscopy, nitrogen adsorption, X-ray photoelectron spectrometry and UV-vis diffuse reflectance spectroscopy. We proposed that the TiO2 nanorods were formed through an oriented attachment mechanism. More importantly, these single crystalline anatase TiO2 nanorods exhibited significantly higher photocatalytic activities than commercial photocatalyst P25. This study provides an environmentally friendly and economic approach to produce highly active TiO2 photocatalyst.  相似文献   

4.
The structural and electrical properties of VO2 nanowires synthesized on Si3N4/Si substrates or molybdenum grids by a catalyst-free vapour transport method were investigated. The grown VO2 nanowires are single crystalline and rectangular-shaped with a preferential axial growth direction of [1 0 0], as examined with various structural analyses such as transmission electron microscopy, electron diffraction, X-ray diffraction, and X-ray photoelectron spectroscopy. In particular, it was found that growing VO2 nanowires directly on Si3N4 deposited molybdenum transmission electron microscopy grids is advantageous for direct transmission electron microscopy and electron diffraction characterizations, because it does not involve a nanowire-detachment step from the substrates that may cause chemical residue contamination. In addition to structural analyses, VO2 nanowires were also fabricated into field effect transistor devices to characterize their electrical properties. The transistor characteristics and metal-insulator transition effects of VO2 nanowires were investigated.  相似文献   

5.
Nitrogen-doped TiO2 nanotubes with enhanced photocatalytic activity were synthesized using titanate nanotubes as raw material by a facile wet chemistry method. The resulting nanotubes were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) spectroscopy, and UV-vis absorption spectroscopy, etc. The photocatalytic activity of nitrogen-doped TiO2 nanotubes was evaluated by the decomposition of methylene blue under artificial solar light. And it was found that nitrogen-doped TiO2 nanotubes exhibited much higher photocatalytic activity than undoped titanate nanotubes.  相似文献   

6.
《Materials Research Bulletin》2013,48(11):4754-4758
La-doped ZnO nanoparticles have been successfully synthesized by a simple solution combustion method via employing a mixture of ethanol and ethyleneglycol (v/v = 60/40) as the solvent. Zinc acetate and oxygen gas in the atmosphere were used as zinc and oxygen sources, and La(NO3)3 as the doping reagent. The as-obtained product was characterized by means of powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectrometry and X-ray photoelectron spectroscopy. Experiments showed that La-doped ZnO nanoparticles exhibited the higher capacities for the removal of Pb2+ and Cu2+ ions in water resource than undoped ZnO nanoparticles.  相似文献   

7.
Ultrafine fluorite type Dy2Zr2O7 nanocrystals with cubic structure were fabricated at relatively low temperature by stearic acid method (SAM) using zirconium(IV) butoxide and dysprosium nitrate as raw materials, stearic acid as solvent and dispersant. The fabrication process was monitored by thermogravimetric analysis and differential thermal analysis (TG-DTA) and Fourier transform infrared spectroscopy (FT-IR). The obtained products were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectrometer (EDS) and UV-vis absorption spectroscopy. A single phase of Dy2Zr2O7 with high crystallinity was formed at 800 °C. The interplanar distances measured from the HRTEM image were 0.284 and 0.256 nm, respectively, coinciding with the theoretical values.  相似文献   

8.
Ni nanoparticles with different mean diameters of 15-83 nm were synthesized by solution reduction process. The size of Ni nanoparticles can be controlled by varying the concentration of NiCl2·6H2O and synthesis temperature. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), infrared spectroscopy (IR) and X-ray photoelectron spectroscopy (XPS). Results show that the synthesized particles are single-phased Ni with a face-centered cubic crystal structure. Magnetic measurements indicate that Ni nanoparticles are ferromagnetic. The lattice constants and coercivities of the samples are size-dependent.  相似文献   

9.
A novel rare earth metal seed was employed as the catalyst for the growth of GaN nanorods. Large-scale GaN nanorods were synthesized successfully through ammoniating Ga2O3/Tb films sputtered on Si(1 1 1) substrates. Scanning electron microscopy, X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy were used to characterize the structure, morphology, and composition of the samples. The results demonstrate that the nanorods are high-quality single-crystal GaN with hexagonal wurtzite structure. The growth mechanism of GaN nanorods is also discussed.  相似文献   

10.
Novel nanorod-assembling hollow nanowires of cadmium sulfide/DBTU (N,N′-dibutylthiourea) nanocomposite were synthesized by reacting CdCl2 with in situ produced H2S from reaction of butylamine and carbon disulfide at molar ratio 3:3 of CS2:BuNH2 at 50 °C. This product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SEAD), energy dispersive X-ray spectroscopy (EDAX), thermogravimetric (TG), Fourier transform infrared (FTIR) and UV-vis absorption spectra. A plausible mechanism that the extending DBTU molecules in solvent of CS2 induce the formation of CdS/DBTU nanorods by coordinating with the formed CdS particles, and construct these nanorods to hollow nanowires via molecular interactions is proposed and discussed on the basis of experimental results. Photoluminescence (PL) of CdS/DBTU nanocomposite exhibits increasing emission intensity largely.  相似文献   

11.
Cadmium vanadium oxides (Cd2V2O7) and Cadmium carbonates (CdCO3) were synthesized via a facile hydrothermal method. X-ray diffraction (XRD), Raman spectroscopy, infrared spectrometer (IR), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) were employed to characterize the structure, morphology and chemical state of the samples, respectively. The photoluminescence (PL) properties of the as-synthesized Cd2V2O7 and CdCO3 were measured at room temperature using an excitation wavelength of 325 nm. The Cd2V2O7 shows two visible light emission centers located at 589 and 637 nm, which are supposed to be relevant to local defects in Cd2V2O7. The CdCO3 shows three emission centers located at 408, 530 and 708 nm, which are supposed to be relevant to the electron transition from the conduction band to valence band and defect related energy level.  相似文献   

12.
We demonstrated a facile and efficient strategy for the fabrication of poly(diallyldimethylammonium chloride) (PDDA)-assisted reduced graphene oxide (RGO) sheets–titanium dioxide (TiO2) in the absence of any seeds and surfactants. PDDA is used as both a reducing agent and a stabilizer to prepare the colloidal suspension of graphene nanosheets. The incorporation of PDDA successfully turns graphene nanosheets into general platforms for in situ growth of TiO2. The prepared TiO2–RGO has been thoroughly characterized by spectroscopic (Fourier-transform infrared spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy) and thermogravimetric analysis. Microscopy techniques (scanning electron microscopy, atomic force microscopy and transmission electron microscopy) have been employed to probe the morphological structures as well as to investigate the exfoliation of RGO sheets. It is interesting to see that the TiO2–RGO composites exhibited excellent photocatalytic activity to hydrogen evolution.  相似文献   

13.
NdOHCO3 dodecahedral microcrystals with an orthorhombic structure have been successfully synthesized by the hydrothermal method used urea as the precipitator. Experimental parameters, such as the reaction temperature, the reaction time, and the molar ratio of the starting reagents were examined. The as-synthesized products were characterized by powder X-ray diffraction, transmission electron microscopy, field-emission scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and photoluminescence. The possible growth process of NdOHCO3 dodecahedral microcrystals was discussed.  相似文献   

14.
A novel and rapid microwave method was used to prepare TiO2 coated ZnO nanocomposite particles. The resulted particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Results show that ZnO nanoparticles were coated with 6-10 nm amorphous TiO2 layers. In addition, zeta potential analysis demonstrated the presence of TiO2 layer on the surface of ZnO nanoparticles. Photoluminescence (PL) spectroscopy and UV-visible spectroscopy were used to investigate the optical properties of the nanoparticles. Compared to uncoated ZnO nanoparticles, the TiO2 coated ZnO nanoparticles showed enhanced UV emission. The UV-visible diffuse reflectance study revealed the significant UV shielding characteristics of the nanocomposite particles. Moreover, amorphous TiO2 coating effectively reduced the photocatalytic activity of ZnO nanoparticles as evidenced by the photodegradation of Orange G with uncoated and TiO2 coated ZnO nanoparticles under UV radiation.  相似文献   

15.
Monodispersed CdS nanoballs were synthesized through γ-irradiating CdCl2, Na2S2O3 and polyvinylpyrrolidone aqueous solution at room temperature. With these well monodispersed CdS nanoballs, CdS@SiO2 core-shell structures were prepared under hydrolysis of tetraethylorthosilicate without adding a coupling agent. Field emission scanning electron micrograph, transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, ultraviolet absorption and photoluminescence spectroscopy were used to characterize the products. It is hoped that the core-shell CdS@SiO2 nanoballs would be used as good luminescence detecting material for biological systems, so this may stimulate technological interest and prospect many other applications in materials related fields.  相似文献   

16.
Co-B flowers with mesoporous structure were first prepared via reduction of cobalt acetate by potassium borohydride in the presence of complexing agent ethylenediamine. The as-prepared Co-B flowers were characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma atomic emission spectroscopy, X-ray photoelectron spectroscopy, N2 adsorption-desorption, and magnetic performance test. The Co-B flowers exhibited enhanced coercivity, and weakened saturation magnetization and remanet magnetization as compared with the regular Co-B. During the hydrolysis of KBH4, the Co-B flowers exhibited higher catalytic activity than the regular Co-B. It is attributed to the larger specific surface area and mesoporous channels. During the successive reactions, the conversion of KBH4 over Co-B flowers was about 97%. The average H2 generation rate of Co-B flowers was 4620 mL/min/g-catalyst in 1.5 wt% NaOH + 15 wt% KBH4 solution, which may give a successive H2 supply for a 748 W polymer electrolyte membrane fuel cell (PEMFC) at 100% H2 utilization.  相似文献   

17.
Fe-doped TiO2 nanotube arrays have been prepared by the template-based liquid phase deposition method. Their morphologies, structures and optical properties were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and UV-vis absorption spectroscopy. Their photocatalytic activities were evaluated by the degradation of methylene blue under visible light. The UV-vis absorption spectra of the Fe-doped TiO2 nanotube arrays showed a red shift and an enhancement of the absorption in the visible region compared to the undoped sample. The Fe-doped TiO2 nanotube arrays exhibited good photocatalytic activities under visible light irradiation, and the optimum dopant amount was found to be 5.9 at% in our experiments.  相似文献   

18.
Thin films of nanocrystalline SnS2 on glass substrates were prepared from solution by dip coating and then sulfurized in H2S (H2S:Ar = 1:10) atmosphere. The films had an average thickness of 60 nm and were characterized by X-ray diffraction studies, scanning electron microscopy, EDAX, transmission electron microscopy, UV-vis spectroscopy, and Raman spectroscopy. The influence of annealing temperature (150-300 °C) on the crystallinity and particle size was studied. The effect of CTAB as a capping agent has been tested. X-ray diffraction analysis revealed the polycrystalline nature of the films with a preferential orientation along the c-axis. Optical transmission spectra indicated a marked blue shift of the absorption edge due to quantum confinement and optical band gap was found to vary from 3.5 to 3.0 eV with annealing temperature. Raman studies indicated a prominent broad peak at ∼314 cm−1, which confirmed the presence of nanocrystalline SnS2 phase.  相似文献   

19.
An efficient method for the preparation of N-F-codoped visible light active TiO2 nanorod arrays is reported. In the process, simultaneous nitrogen and fluorine doped TiO2 nanorod arrays on the glass substrates were achieved by liquid phase deposition method using ZnO nanorod arrays as templates with different calcination temperature. The as-prepared samples were characterized by Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV-vis absorption spectra measurements. It was found that calcination temperature is an important factor influencing the microstructure and the amount of N and F in TiO2 nanorod arrays samples. The visible light photocatalytic properties were investigated using methylene blue (MB) dye as a model system. The results showed that N-F-codoped TiO2 nanorod arrays sample calcined at 450 °C demonstrated the best visible light activity in all samples, much higher than that of TiO2 nanoparticles and P25 particles films.  相似文献   

20.
Carbon Nanotube-Neodymium Oxide (CNT-Nd2O3) composite was prepared by using acid treated carbon nanotubes (CNTs) and neodymium nitrate in the presence of sodium dodecyl sulfate and ammonia liquid. Techniques of transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and differential thermal analysis (DTA) are used to characterize the morphology, structure, composition and catalytic property of the CNT-Nd2O3 composite. The experimental results show that the Nd2O3 nanoparticles, which have an average diameter of about 30-40 nm, are loaded on the surface of carbon nanotube. Compared with pure Nd2O3 nanorods, the CNT-Nd2O3 composite can catalyze the thermal decomposition of ammonium perchlorate more effectively. The sampling methods of the experimental samples made a difference on the catalytic experiment results, and the best catalytic result was obtained when de-ionized water served as the solvent of ammonium perchlorate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号