首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
气体处理     
《气体净化》2004,4(2):19-21
1 二异丙醇胺(ADIP)工艺 该工艺采用再生过的胺将H2S及CO2从天然气、炼厂气及合成气中脱除,H2S被脱除至很低的水平。该工艺同样可用于脱除液化石油气或天然气中的H2S,CO2及羰基硫,通过闪蒸再生。从合成气中脱除大部分CO2,是该工艺的另一个应用。  相似文献   

2.
针对硫回收装置对酸性气中H_2S摩尔分数有要求的问题,提出了一种能耗低并且能够显著提高系统出口酸性气中H_2S摩尔分数的工艺方案。采用模拟手段,对富甲醇热闪蒸及再生工艺流程进行了优化改进;对改进后的富甲醇热闪蒸汽提再生工艺原料气适应性进行了计算分析,探讨了改进后的提浓工艺机理,得到了汽提塔理论板数。研究结果表明,针对低硫进料气,通过热闪蒸及预提浓后酸性气中H_2S摩尔分数能达到40%及以上。改进的酸性气提浓工艺可调节的操作参数多,适应性强,对于更低硫含量的原料气,酸性气产品中的H_2S也能得到充分提浓。此外,新的提浓工艺具有投资低、操作费用节省的优点。  相似文献   

3.
原料气中的H2S和CO2不仅污染环境,更不利于商品天然气的利用,因此,选择适宜的脱硫脱碳溶剂十分必要。本文分析了低含硫高碳硫比天然气的气质特点,并且讨论了脱除二氧化碳的工艺选择所考虑的因素。并介绍了适宜高碳硫比脱硫脱碳的胺吸收法和热碳酸盐法。  相似文献   

4.
采用HYSYS模拟软件结合实际操作参数修正并验证后的模型,对某脱酸装置影响脱酸效果的原料气温度、胺液循环量、胺液浓度、吸收塔压力、闪蒸压力、再生塔回流比等主要因素进行了适应性分析及解释。结果表明:胺液循环量、贫胺液浓度、再生塔回流比是影响能耗的主要因素;原料气温度、吸收压力对吸收效果和性能影响有限;闪蒸压力的确定对再沸器负荷有一定的影响,应结合闪蒸气去向最终确定。可对该装置操作优化及指导后续操作优化。  相似文献   

5.
介绍了硫磺装置停工采用的全流程吹硫工艺的流程、技术优势、主要操作方法和应用效果,并指出了实现烟气达标排放的操作要点.全流程吹硫工艺是指将酸性气燃烧炉的酸性气切除,引入天然气和空气,在正常操作流程及条件下进行吹硫,该工艺由当量吹硫和过氧钝化2个阶段组成.与传统吹硫工艺相比,全流程吹硫可以最大程度地回收硫,极大地降低烟气碱...  相似文献   

6.
用Aspen HYSYS软件模拟分析了富含CO_2天然气脱CO_2方法和工艺操作条件,如原料气处理量、吸收塔温度、吸收塔压力、吸收塔板数、再生塔温度对脱CO_2能耗的影响,并通过灵敏度分析比较了各操作条件对脱CO_2能耗的影响力大小。结果表明,富含CO_2天然气中CO_2浓度高,为满足净化要求需增大溶液循环量,由此带动公用工程消耗增加,脱CO_2能耗比常规天然气脱CO_2情况显著增加。在操作中,提高吸收塔温度、再生塔温度和原料气处理量均会引起脱CO_2能耗升高,而降低吸收塔压力、减少吸收塔板数可降低脱CO_2能耗。由于醇胺溶液再生耗能占脱CO_2总能耗绝大部分,在制定节能措施应重点考虑了再生塔温度控制,蒸汽、凝结水以及净化系统余压、余热资源的合理利用。  相似文献   

7.
天然气原料中含有的成分较多,尤其是H_2S与CO_2的存在,不仅影响天然气的利用效率与效果,还会对环境产生严重的影响,需要灵活利用当前的脱硫脱碳技术与酸气处理工艺,提升天然气质量。基于此,本文从当前的高碳硫比用天然气的气质特点入手,深入进行分析,并结合实际情况,明确脱硫脱碳影响因素,灵活应用该技术,以供参考。  相似文献   

8.
介绍了四川石化公司溶剂再生装置特点。通过上游装置生产异常波动对溶剂再生及制硫系统的影响,详细分析造成异常的原因以及采取的技术改造措施。重点介绍溶剂再生装置富胺液闪蒸罐改造、改造后运行情况,以及工艺优化控制方案。通过对富液闪蒸罐温度压力、再生塔底蒸汽用量以及贫胺液外送温度进行优化,在不影响本装置工艺操作和贫胺液质量合格的前提下,富液闪蒸罐温度控制在65~75℃,闪蒸压力控制在0.030~0.160 MPa,贫胺液出装置温度控制在55±2℃。同时针对目前存在的问题提出了解决办法,为同类装置的安全平稳长周期运行提供参考。  相似文献   

9.
张昊  申凯  赖艳华  崔琳  董勇 《化工学报》2019,70(6):2269-2278
燃煤电厂排放的烟气中含有大量水蒸气,氯化钙溶液循环除湿技术具有较好的除湿潜力。为了研究吸湿后的氯化钙溶液的再生性能,使用Matlab软件对液滴闪蒸过程进行了数值模拟,并搭建了氯化钙溶液喷雾闪蒸试验台。考察了闪蒸压力,溶液初始温度、浓度、溶液流量等因素对氯化钙溶液再生量的影响。试验结果表明了数学模型的准确性;溶液表面蒸气压和再生压力的差值以及溶液过热度是影响再生量的关键因素;闪蒸出口水蒸气经冷凝后Cl含量不足0.2 mg/L。浓度为35%的溶液在再生温度为60℃、再生压力为10 kPa、流量为0.2 m3/h的情况下,可以实现5 kg/h以上的水分回收量。  相似文献   

10.
燃煤电厂排放的烟气中含有大量水蒸气,氯化钙溶液循环除湿技术具有较好的除湿潜力。为了研究吸湿后的氯化钙溶液的再生性能,使用Matlab软件对液滴闪蒸过程进行了数值模拟,并搭建了氯化钙溶液喷雾闪蒸试验台。考察了闪蒸压力,溶液初始温度、浓度、溶液流量等因素对氯化钙溶液再生量的影响。试验结果表明了数学模型的准确性;溶液表面蒸气压和再生压力的差值以及溶液过热度是影响再生量的关键因素;闪蒸出口水蒸气经冷凝后Cl–含量不足0.2 mg/L。浓度为35%的溶液在再生温度为60℃、再生压力为10 kPa、流量为0.2m3/h的情况下,可以实现5 kg/h以上的水分回收量。  相似文献   

11.
Shell-Paques生物脱硫技术及其应用   总被引:2,自引:0,他引:2  
汪家铭 《化肥设计》2010,48(2):39-42
Shell-Paques技术是具有代表性的生物脱硫及硫回收工艺,其采用脱氮硫杆菌并使之在弱碱性溶液条件下吸收H2S,从含硫酸性气中脱除H2S,并在自然产生的微生物及空气的作用下,将所吸收的硫化物氧化成元素硫。该技术具有净化效率高、适应范围广、操作维护方便、环保效益好、副产生物硫磺等特点,可用于合成气、天然气、炼厂气等含有H2S的酸性气的净化过程。介绍了Shell-Paques生物脱硫技术的基本原理、工艺流程、技术特点及其在国内外的应用概况。  相似文献   

12.
QCS201 型耐硫变换催化剂在低硫渣油流程上的工业应用   总被引:1,自引:0,他引:1  
本文介绍了耐硫变换催化剂QCS201 在以低硫渣油为原料的变换工艺上的工业应用情况和两个生产周期后顶部催化剂取样分析测试结果。运转数据和取样分析测试结果表明, QCS201 型催化剂完全可以适用于高压(~810MPa)、高水气比(~114) 和硫化氢浓度>0.01% (vol) 条件下操作, 尤其在低温或低硫时变换活性高; 对高空速和宽水气比适应能力强; 抗水合性能、耐油及耐毒物能力强, 稳定性好; 易于硫化。  相似文献   

13.
李奇  李伟  姬忠礼 《化工进展》2014,33(12):3176-3182
针对高含硫天然气净化装置运行能耗高的问题,本文建立了高含硫天然气净化过程中各类 值计算方法,并对离子溶液体系的 值计算方法进行了修正,使其适用于酸气吸收过程中醇胺溶液的 值计算。在天然气净化过程模拟软件ProMax建立的净化过程全流程模型的基础上,采用 分析方法对高含硫净化装置的全流程进行用能分析。分析结果表明,净化装置全流程的 效率为54.2%,其中硫黄回收单元和尾气处理单元 效率最高,分别为66.8%和66.1%;脱酸气单元的 损失最高,占全流程总 损失的43.5%,这是由于净化装置处理的原料气中H2S含量很高,需要更大溶剂循环量才能使净化气达到商品气标准,这导致吸收溶剂再生过程的能耗大大增加。本文研究成果可指导高含硫天然气净化装置的用能评价及节能改造。  相似文献   

14.
直接氧化法硫磺回收工艺在IGCC改造项目的应用   总被引:1,自引:0,他引:1  
简要介绍了直接氧化法硫磺回收工艺的发展情况;通过分析IGCC(煤气化联合循环发电系统)改造项目中应用直接氧化法硫回收技术的情况,说明直接氧化法硫回收工艺可满足处理低浓度H2S酸性气要求,且通过采用两台反应器的组合方式,可解决酸性气量偏大、浓度偏高等问题,提高了硫回收率和硫磺产量。  相似文献   

15.
A continuous catalytic process was developed to remove hydrogen sulfide from a natural gas stream using activated carbon as catalyst. The concentration range of hydrogen sulfide in the gas stream studied was 300–3000 ppmv (0.0126–0.126 moles/m3). Virtually 100 percent conversion of hydrogen sulfide was achieved by the combination of various parameters. The “field gas” employed in this study exhibited cracking of some heavier hydrocarbons and made the product sulfur slightly brown. These hydrocarbons should therefore be separated from the gas stream prior to the oxidation reaction. No carbon monoxide or carbon dioxide was produced during the oxidation of hydrogen sulfide. It is concluded that the process described herein has the potential for the removal of hydrogen sulfide as sulfur from a sour natural gas stream on a continuous basis and could therefore eliminate an environmental problem which now exists.  相似文献   

16.
Low concentrations (e.g. < 3) of H2 S in natural gas can be selectively oxidized over an “granular Hydrodarco” activated carbon catalyst to elemental sulphur, water and a small fraction of by-product sulphur dioxide, SO2. To optimize the H2 S catalytic oxidation process, the process was conducted in the temperature range 125—200 °C, at pressures 230—3200 kPa, with the O/H2 S ratio being varied from 1.05 to 1.20 and using different types of sour and acid gases as feed. The optimum temperature was determined to be approximately 175 °C for high H2 S conversion and low SO2 production with an O/H2 S ratio 1.05 times the stoichiometric ratio. The life of the activated carbon catalyst has been extended by removing heavy hydrocarbons from the feed gas. The process has been performed at elevated pressures to increase H2 S conversion, to maintain it for a longer period and to minimize SO2 production. The process is not impeded by water vapour up to 10 mol% in the feed gas containing low concentrations of CO2 (< 1.0). A decrease in H2 S conversion and an increase in SO2 production were obtained with an increase in water vapour in the feed gas containing a high percentage of CO2. The process works well with “sour natural gas” containing approximately 1% H2 S and with “acid gas” containing both H2 S and CO2. It gives somewhat higher H2 S conversion and low SO2 production with feed gas containing low concentrations of CO2. A kinetics study to determine the rate-controlling step for the H2 S catalytic oxidation reaction over “granular Hydrodarco” activated carbon has been conducted. It was concluded that either adsorption of O2 or H2 S from the bulk phase onto the catalyst surface is the rate-controlling step of the H2 S catalytic oxidation reaction.  相似文献   

17.
Split-flow gas sweetening is known to consume less energy than a conventional gas sweetening process when the inlet sour gas contains a high concentration of acid gases. In this work, a computer simulation of a split-flow natural gas sweetening process based on absorption/stripping process with alkanoamine (MEA and DGA) solutions, using Aspen plus, was performed. The input of parameters such as the concentration of sour gases (CO2, H2S) in the feed gas has been examined. Simulation results show that the split-flow gas sweetening process can reduce the reboiler duty of a stripping tower better than the conventional gas sweetening process according to the concentration of CO2 in the feed gas.  相似文献   

18.
天然气膜法脱硫实验研究   总被引:3,自引:0,他引:3  
利用膜分离技术对天然气中的H2S进行处理。考察膜两侧压力差、进气流量、气体温度、H2S浓度等操作参数对脱硫效率和烃损失率的影响。结果表明,膜分离技术可以使天然气得到脱硫净化,使硫含量控制在5 mg/m3以内,达到输送或使用标准;但若利用单级膜组件进行脱硫,烃损失率很大,经济性得不到保障。下一步的工作是筛选出分离性能更好的膜进行实验,并进行部分物料循环级联设计,提高烃回收率。  相似文献   

19.
For selective removal of H2S from much larger quantities of CO2 under pressure, an industrial prototype spray column has been constructed. Sodium hydroxide solution was atomized by a pressure nozzle of special design and entered the scrubber as fine spray to contact the sour gases.

Several operating variables were examined in order to indicate optimal operating conditions for maximum selectivity of H2S over CO2. Fine mist and short contact time favor this selective absorption process. An optimum inlet reactant concentration was found dependent upon the H2S content relative to CO2 in the inlet sour gas mixture. A special nozzle/shield configuration to avoid contact of sour gas with highly turbulent liquid during droplet formation significantly improved the selectivity.  相似文献   

20.
Low concentrations of hydrogen sulfide (H2S) in natural gas can be selectively oxidized over an activated carbon catalyst to elemental sulfur, water and a small fraction of sulfur dioxide (SO2). Efforts to improve catalyst performance and product sulfur quality have been made by a) modification of the catalyst composition b) removal of the heavy hydrocarbons from the feed and c) choice of reaction conditions. The use of a guard bed to absorb heavy hydrocarbons and operation at elevated pressures show positive results. A preliminary flow diagram incorporating these findings has been prepared for a small commercial unit capable of processing sour natural gas containing 1.0% H2S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号