首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了解释炼钢过程中固态夹杂物比液态夹杂物更易去除的现象,基于分离过程中受力分析,建立了描述八面体和板状夹杂物穿过钢-渣界面行为的数学模型。与传统数学模型相比,本模型考虑了夹杂物周围钢-渣界面变形引起的界面变形阻力。同时,采用该模型研究了各相(钢液、渣和夹杂物)界面张力和顶渣黏度等因素对固态夹杂物穿过钢-渣界面分离行为的影响。结果表明,若忽略固态夹杂物溶解过程,钢液、顶渣和夹杂物体系释放的界面自由能是固态夹杂物穿过钢-渣界面的驱动能,且该动能已足够保证多数固态夹杂物穿过钢-渣界面进入渣层。固态夹杂物溶解过程释放的吉布斯自由能远大于该过程释放的界面自由能,固态夹杂物接触钢-渣界面的瞬间被顶渣吸收去除。  相似文献   

2.
针对某钢厂板坯连铸结晶器的结构参数,建立了描述结晶器内钢液流动的三维数学模型,用Fluent软件对结晶器内钢液流动行为和夹杂物运动行为进行了模拟,分析了不同颗粒直径,不同颗粒密度,不同颗粒数量及不同加入位置对夹杂物上浮的影响.研究结果表明,夹杂物的轨迹与钢液的流线图相似;夹杂物颗粒数量对去除率影响不大;夹杂物密度为3500kg/m3、直径为400μm时可以完全去除;密度较小且靠近浸入式水口壁面的夹杂物易被除去.  相似文献   

3.
针对贵钢在使用55SiMnMo中空钢实心坯制造的钎杆出现因硬性夹杂导致断裂的问题,对55SiMnMo中空钢生产工艺Consteel-LF-VD-CC进行全流程取样,对钢中气体含量和夹杂物进行分析,找到钢水洁净度的限制性环节,并由此得出改进措施. 钎杆断裂面的夹杂物分析显示,主要为较大粒径的带棱角的纯Al2O3硬性夹杂以及不规则形状的MgO-CaO-SiO2复合夹杂. 分析钢样可发现以下工艺问题:LF精炼后期渣面裸露吸气,钙处理后夹杂物变性不完全,钢包开浇过程中存在明显吸气和卷渣现象. 铸坯中T[O]含量为9×10-6,显微夹杂物以MnS, Al-Mn的复合氧化物夹杂为主,大型夹杂物以SiO2-Al2O3-MnO-CaO复合夹杂为主.  相似文献   

4.
基于自行设计的双极串联结晶器旋转电渣重熔炉,采用ASPEX全自动夹杂物分析仪研究了结晶器转速对M2电渣锭洁净度的影响。结果表明,不论结晶器是否旋转,电渣锭中的夹杂物组成基本不变,主要由Al2O3, Al2O3–MnS, Al2O3–SiO2–CaO–MnS, MgO–Al2O3–SiO2–CaO–MnO, MgO–Al2O3–SiO2–CaO–TiO2–MnS, Al2O3–SiO2–CaO–MnO–TiO2组成,其中以Al2O3, Al2O3–SiO2–CaO–MnO–TiO2和Al2O3–MnS数量最多。结晶器静止电渣重熔时,钢中的夹杂物数量较多,且存在50 ?m以上的大颗粒夹杂物,而结晶器转速为6和13 r/min时,夹杂物数量减少,大颗粒夹杂含量大大降低;转速增至19 r/min时,夹杂物数量及尺寸又进一步增加,同时钢中全氧含量、氮含量明显增加。电渣锭中大颗粒夹杂物得以去除的主要原因是结晶器旋转导致金属自耗电极末端的熔融层变薄、熔滴尺寸变小,渣–金接触面积增大,促进了夹杂物被熔渣去除;过快的转速会增加自耗电极氧化、减少渣–金接触时间,从而降低电渣重熔过程的精炼能力。  相似文献   

5.
作为衡量钢产品质量的指标,冶金反应器内夹杂物大小、数量,形态和分布越来越受到冶金工作者关注.作为研究钢液中夹杂物行为的重要手段,数值模拟方法被广泛地应用于冶金工艺的优化.本文综合论述了夹杂物行为数值模拟的研究现状,分析了钢中夹杂物的基本数学模型和多模式数学模型优点和不足,并提出了未来的发展趋势和重点要解决的问题.数值模拟结果表明,受钢液运动的影响,夹杂物体积浓度和特征半径在连铸结晶器下方呈"W"形分布.  相似文献   

6.
针对RH精炼并结合典型的渣-钢化学平衡实验,研究了超低碳铝硅镇静钢精炼过程中夹杂物的变化以及钢包顶渣组成对钢中夹杂物的影响. 用激光共聚焦高温扫描显微镜在线观察了再加热过程中钢的微观组织变化,讨论了夹杂物对钢的晶粒长大的影响. 结果表明,本实验条件下精炼前钢中夹杂物是以Fe-Mn氧化物为主的复合夹杂,夹杂物数量和大小受渣碱度、Al2O3含量及CaO/Al2O3比值的影响较大,当碱度为1.5及Al2O3含量为20%时,夹杂物数量最少. 以成分优化的钢包渣与精炼末期钢样进行的平衡实验显示,夹杂物为Al2O3-MgO或Al2O3-MgO-SiO2-MnO为主的复合夹杂,随渣中w(MnO)的增加,复合夹杂中Mn含量有增加的趋势,使钢的晶粒长大过程需要更高的再加热温度. 钢样再加热后,钢中夹杂物变为以Al2O3, MgO, SiO2复合夹杂为主,三者总量占夹杂物总量的90%或以上,复合夹杂中MnO含量受加热制度影响.  相似文献   

7.
对酒钢CSP流程SPCC两个浇次在LF进站、LF中期、LF出站、中包、铸坯和轧制过程分别取钢样,用SEM-EDS分析其夹杂物及成分. 结果表明,在喂铝线后,钢液中很快形成大量形状不规则Al2O3夹杂物,随着精炼进行夹杂物存在两种变性路线:Al2O3-MgO·Al2O3-CaAlMg复合夹杂物和Al2O3-CA6-CA2-CA-低熔点夹杂物. 经过钙处理后大部分夹杂物可较好地变性到低熔点液相区或固液两相共存区. 夹杂物变性越好,则钢液中夹杂物球形化率越高,总量也越小,夹杂物成分对其尺寸也有重要影响. 分析了外层被钙铝酸盐和CaS包裹的双层夹杂物的形成机理,前者由于钢中Ca还原MgO·Al2O3尖晶石中Mg或Al2O3中Al;后者由于在铸坯凝固过程中温度降低及元素S的偏析,造成液芯中S浓度升高,其与Ca在已有的固体夹杂物核心的表面析出CaS. 在轧制过程中,前者变形能力较好,后者的外层CaS易与内部核心分离,甚至产生微裂纹.  相似文献   

8.
钢包内衬用MgO-CaO-C砖的开发与应用   总被引:13,自引:6,他引:7  
采用抗水化处理后的镁钙砂为原料 ,研制了MgO -CaO -C砖 ,并对使用MgO -CaO -C砖过程中钢液中夹杂数量和氧含量的变化情况进行了分析。结果表明 :MgO -CaO -C砖在钢包包壁非渣线部位使用 ,能减少钢中氧含量和夹杂物数量 ,降低夹杂粒径 ,改变夹杂粒度分布 ,提高钢水质量。  相似文献   

9.
实验研究了镁质、氧化铝质和镁钙质三种中间包内衬涂料与钢水反应,考察了其对钢中T.O, T.N及Al, Ti, Si, Mn含量、夹杂物组成、数量和尺寸分布的影响,并分析了钢水在钢/涂层界面对涂层的渗透和侵蚀程度. 结果表明,在1550℃下,相比于镁质涂料和氧化铝涂料,镁钙质涂料能对钢液T.O和成分有更好的控制,终点氧含量在8.5′10-5,对钢液的二次氧化很少,并有利于细小夹杂物的形成,其中<1 mm夹杂物占98.13%;钢中首先是Al, Ti被氧化,之后是Si, Mn被氧化;氧化铝涂料被损坏的机理主要是冲刷脱落,镁质和镁钙质涂料的损坏则以渗透侵蚀为主. 镁钙质涂料对钢液的二次污染小,有利于洁净钢的生产.  相似文献   

10.
管线钢夹杂物变性的理论与实验研究   总被引:1,自引:0,他引:1  
通过对钙处理过程中夹杂物变性的热力学分析,绘制了夹杂物变性过程中钙、铝、氧、硫活度的优势区图及夹杂物变性路径图,并系统分析了钢液温度、铝活度、硫活度等因素对夹杂物变性的影响.管线钢夹杂物变性后,氧化物夹杂为球形或块状的钙铝酸盐,少量的硫化物夹杂为CaS夹杂、CaS均匀分布的CaO·Al2O3CaS复合夹杂和内核为CaO·Al2O3外壳为CaS的复合夹杂.  相似文献   

11.
通过设计含镁渣系,并在电渣重熔过程添加脱氧剂,氩气保护气氛下进行电渣重熔实验,研究了电渣重熔过程增镁的可能性。用电感耦合等离子体原子发射光谱分析了钢中的镁含量,用ASPEX扫描电镜分析了电渣锭中镁含量对夹杂物尺寸、类型、形貌等的影响。结果表明,渣中含20wt% MgO以上时,即使自耗电极中不含镁,也能使渣中MgO向钢液中传递镁。实验室条件下,分别用55wt% CaF2–15wt% Al2O3–10wt% CaO–20wt% MgO, 65wt% CaF2–10wt% Al2O3–25wt% MgO, 51wt% CaF2–8wt% Al2O3–8wt% CaO–23wt% MgO–10wt% MgF2渣系重熔时,电渣锭中镁含量分别为0.0034wt%, 0.0039wt%, 0.0043wt%。随电渣锭中镁含量增加,夹杂物组成逐渐从以Al–Ca, Al–Mn–S, Al–Mg–Mn–S为主,转变为以含镁夹杂物为主,镁含量最高达98wt%;夹杂物数量大幅减少,直径明显减小,最大直径均小于10 μm,大多数小于5 μm。与含镁0.0003wt%的电渣锭相比,镁含量增至0.0034wt%时,夹杂物从357个降至31个,最大夹杂物直径由11.0 μm降至8.5 μm,平均直径由3.7 μm降至3.2 μm。  相似文献   

12.
我国新疆地区高碱煤储量巨大,但煤的原生矿物中含有大量Na、K等碱金属元素,导致目前新疆地区无法直接燃用该类煤种,许多电厂不得不掺烧其他煤种以满足锅炉正常运行,极大限制了其广泛利用。液态排渣旋风炉燃烧锅炉技术是一种使煤燃烧产生的大部分灰在旋风燃烧器内形成液态渣膜并从锅炉底部排出的锅炉技术,对于解决新疆高碱煤强沾污结渣问题具有一定优势。为研究液态排渣卧式旋风炉燃用新疆高碱煤液渣捕捉碱金属特性,在实验室条件下搭建液态排渣卧式旋风试验炉,并对新疆沙尔湖煤进行燃烧试验,对试验过程中在卧式液态排渣旋风试验炉内采集到的灰渣样进行SEM-EDS分析,根据其分析结果计算灰渣样中碱金属的固碱率,同时观察试验过程中炉膛内壁液渣的形成情况,测量炉内温度分布情况。结果表明:试验工况稳定后旋风炉内总体温度分布比较均匀,沙尔湖煤适用于液态排渣卧式旋风燃烧炉燃用,燃烧温度1 300℃时,旋风炉膛内开始形成液渣,升高燃烧温度,炉内液渣形成较为明显,卧式液态排渣旋风炉燃用高碱煤,炉内形成液渣时,液渣中Fe元素会黏结在硅铝酸盐颗粒表面,增加其黏性,加强烧结层捕获灰颗粒的能力,促进渣层生长;采用卧式液态排渣旋风炉燃用高碱煤能有效缓解炉膛内壁黏污、结渣问题,同时高温燃烧区相对于低温燃烧区缓解效果较为明显;卧式液态排渣旋风炉燃高碱煤时液渣对碱金属Na、K等的捕捉效率达50%以上,最高可达61.01%,高于自身固态灰、高温区添加高岭土对Na的捕捉效率。  相似文献   

13.
根据实际生产条件,用FactsagTM计算确定了钢液中[O]平衡[Ca]平衡分别为5.00×10-4和1.23×10-3.以此为基础,在0~100 s用夹杂物生成模型进行计算,发现夹杂物粒度大多数在5μm以内,100 s时总数达1.31×1015个/m3.100~1000 s时用夹杂物去除模型计算,发现经吹氩搅拌后,夹杂物粒度分布变均匀,范围扩大,而总数减少为3.07×1012个/m3.计算结果和实测结果吻合,因此本模型可信.  相似文献   

14.
采用自行设计的带超声波振动的电渣炉,研究了超声波功率对轴承钢中氧化铝夹杂物分布及去除的影响. 结果表明,电渣重熔过程中超声波功率从0增至400和700 W,钢锭中的夹杂物最大尺寸分别是40, 36和14 mm,功率增至1000 W时,夹杂物最大尺寸增至36 mm. 电渣重熔过程中无超声波时,钢锭中夹杂物在试样边部与中心部位聚集,边部聚集尤为严重. 超声波功率增加,夹杂物聚集逐渐减弱直至均匀分布. 超声波去除夹杂物主要是其空化和声流效应改善了渣-金间反应的动力学条件,使夹杂物均匀分布于钢锭中. 但超声波功率过高会降低渣-金间的反应速率,引起金属熔池扰动,降低电渣精炼能力.  相似文献   

15.
连铸结晶器内非金属夹杂物运动行为模拟   总被引:7,自引:0,他引:7  
通过联立求解Navier-Stokes方程和颗粒运动轨迹方程来确定非金属夹杂物在钢液中的上浮速度,对板坯结晶器内夹杂物的运动规律进行了模拟,并用个别实验结果进行了验证. 结果表明: 夹杂物颗粒粒径越大,浮力作用越明显,其下潜深度越小,停留时间缩短,夹杂物上浮的可能性越大. 为保证夹杂物顺利上浮至渣层被去除,在本计算条件下, 连铸机垂直段长度应大于2.5 m.  相似文献   

16.
研究了Fe-Mg-Al脱氧剂脱氧对SS400薄板坯脱氧及钢中非金属夹杂物脱除作用的影响.结果表明,Fe-Mg-Al脱氧与Fe-Al脱氧相比,总氧量有所降低,夹杂物数量减少,硅酸盐类夹杂物级别降低,板材强度提高.  相似文献   

17.
采用非水溶液电解法提取了Ti, Nb稳定化超纯铁素体不锈钢中的夹杂物和析出物,采用场发射扫描电镜观察其形貌,并结合能谱仪分析其成分. 结果表明,高钛型铁素体不锈钢中的夹杂物多为立方结构的碳氮化钛或树枝状的钛氧化物夹杂;Ti,Nb双稳定化铁素体不锈钢中,夹杂物核心由钛氧化物与氮化钛复合而成,棱角上包裹碳氮化铌;高铌型铁素体不锈钢中夹杂物为十字状或树枝状NbC. 利用热力学数据计算了Ti稳定化铁素体不锈钢中复合夹杂物的析出顺序及TiN的析出时机. 计算表明,在1873 K铁素体不锈钢成分条件下TiOx-TiN复合核心中钛氧化物为Ti2O3. 随着温度的降低,Ti, N在钢液中出现偏析富集,在钢液凝固过程中生成TiN,降低钢液中N含量可推迟TiN的析出时机.  相似文献   

18.
国内Shell粉煤气化炉在长周期运行中曾多次出现大块熔渣堵塞渣池出口的现象,严重制约着工业化装置的安全、经济、稳定运行。为了探讨大块熔渣形成的原因,以Shell粉煤气化炉为研究对象,建立了其渣口区熔渣流动与传热模型。该模型可以预测固态渣层厚度、液态渣层厚度和渣层表面温度等。结果表明:气化炉运行时,由于熔渣的沉积,在渣裙表面将形成一定厚度的固态渣层。开车初期,熔渣全部被冷凝成固态渣,当渣层表面温度超过渣的临界温度,液态渣层开始出现,此后随着时间的增加,固态和液态渣层都继续增厚直至达到稳定状态。离气化炉渣口处越远,渣层厚度和表面温度就越大。气化炉渣口温度和沉积率越低,固态渣层厚度就越大,所需要的特征时间也越长。  相似文献   

19.
采用数值模拟方法,研究了某钢厂60 t钢包透气砖狭缝长度和条数及吹氩流量和时间对夹杂物去除的影响.结果表明,不同长度的狭缝都存在利于夹杂物去除的临界吹氩流量,狭缝长度从10 mm增到30 mm,临界吹氩流量由125 L/min增至225 L/min,夹杂物去除率由65%增至76%;夹杂物去除主要发生在前12 min,狭缝数为16条时,夹杂物去除率最大;其他条件一定时,吹氩量过大反而不利于夹杂物去除.工业实践表明,数学模型能很好地模拟钢中夹杂物的去除.  相似文献   

20.
针对攀钢200 t钢包,结合物理模拟与数值模拟,研究了一定底吹氩流量和时间条件下钢水流动行为与夹杂物去除率的关系. 结果表明,夹杂物去除率受气泡、旋涡和液面速度影响. 当吹氩流量从4 Nm3/h增加到5 Nm3/h时,气泡尺寸增大,夹杂物去除率降低;当从5 Nm3/h增加到12 Nm3/h时,气泡数增加,搅拌能增大,夹杂物去除率升高;但超过12 Nm3/h后,受旋涡影响,液面速度增大引起回流惯性力增加,夹杂物去除率反而降低. 合理的吹氩流量为9~12 Nm3/h,吹氩时间为8~10 min. 该条件下钢水经吹氩去夹杂物后,钢中全氧低于25′10-6(w).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号