共查询到18条相似文献,搜索用时 93 毫秒
1.
为有效解决渣油加氢脱金属过程中沥青质和胶质等大分子物质的扩散、反应和沉积难题,提高催化剂脱杂质活性和容金属能力,对催化剂设计进行了优化集成,开发出了一系列催化剂制备关键技术,研制成功4个牌号的脱金属催化剂(PHR-101、PHR-102、PHR-103、PHR-104)。以非酸性的黏结剂代替胶溶酸实现氧化铝的无酸成型,大幅提高了载体孔容和孔径;采用复合扩孔方法制备出双峰孔结构载体,大于1000nm孔比例达到16.4%,改善了催化剂孔道结构;实现活性金属组分的非均匀负载,优化活性分布,促进杂质向催化剂内部的扩散和沉积。小型装置2000h评价结果表明,催化剂脱杂质(脱金属、脱硫、脱残炭)活性与稳定性明显高于常规催化剂。模拟工业运转条件下,在1L中型装置上进行了5500h长周期试验,结果表明,加氢全馏分产品金属含量满足指标要求,催化剂预期寿命达到8000h以上,满足工业应用要求。14个月的挂篮试验表明,与工业催化剂相比,所开发催化剂的金属容纳能力更高,金属沉积更为均匀。 相似文献
2.
3.
4.
5.
6.
7.
8.
渣油加氢处理技术是近年发展最快的技术领域。渣油加氢处理催化剂是此技术的关键。多种固定床渣油加氢处理催化剂在国外已进行了开发和工业应用。我国也开发了多种固定床渣油加氢处理催化剂,实践表明这种催化剂具有良好的活性和稳定性,产品质量良好,收率高,可为RFCC提供优质的原料。悬浮床渣油加氢处理催化剂也在开发之中,中试试验取得了良好的结果。 相似文献
9.
介绍了孔结构优化对渣油加氢脱金属剂的影响。为提高脱金属剂的脱金属活性以及长周期运行稳定性,首先以工业参比失活脱金属剂的失活行为做指导,提出自制脱金属剂设计优化思路;随后在脱金属剂载体制备过程中,加入薄膜胶溶剂和高聚合度扩孔剂并调节水含量成功制备出具有更多大孔分布、更大孔容的载体。与工业参比脱金属剂相比,自制脱金属剂载体具有更多的300 nm孔分布,孔容提高约50%。自制脱金属剂对镍、钒总脱除能力比工业参比脱金属剂高2%~3%,并具有优异的长周期运转稳定性。自制脱金属剂有着更好的渣油加氢反应性能和稳定性,有较好的应用前景。 相似文献
10.
11.
俄罗斯是我国最大原油供应国之一,俄罗斯渣油中硫、氮、残炭、金属含量均较高,无法直接进入催化裂化装置加工,需要进行渣油加氢处理。本文利用核磁、傅里叶变换高分辨质谱等技术手段对俄罗斯渣油分子结构进行了详细表征,并根据其性质和分子结构特点,对PHR系列催化剂及级配进行适应性优化改进,开发形成了俄罗斯渣油加氢处理技术。工业应用结果表明,开发的俄罗斯渣油加氢处理技术具有非常出色的原料适应性和活性稳定性,能够实现俄罗斯渣油中S、N、Ni、V深度脱除和残炭深度转化,催化剂运行时间达到19416h,1t催化剂加工处理原料油达到6000t,均比设计值高62%。通过分析加氢渣油中未被脱除的氮化物分子形态,提出了实现技术持续优化改进的方向。 相似文献
12.
13.
采用饱和浸渍法、在不同焙烧气氛(空气、氮气、水蒸气)下制备了三种加氢脱金属Mo-Ni催化剂,并考察了焙烧气氛对催化剂脱金属、脱硫和脱残碳的影响,研究结果表明:焙烧气氛对加氢脱金属反应的活性影响不大,而空气气氛下焙烧的催化剂表现出相对较高的加氢脱硫和脱残碳活性。进一步考察了氧化铝孔结构对催化剂加氢脱金属性能的影响,并结合数值模拟计算,发现最可几孔径为22 nm的催化剂更有利于加氢脱金属过程的反应-扩散平衡,从而表现出较高的加氢脱金属性能。 相似文献
14.
固定床渣油加氢技术是重质油轻质化的重要手段,积炭是造成催化剂失活、缩短渣油加氢装置运行周期的重要原因之一。本文介绍了固定床渣油加氢反应时催化剂积炭的来源、积炭类型及形成机理、影响积炭形成的因素、抑制催化剂积炭的方法。积炭分为软炭和硬炭,主要由渣油中的沥青质等稠合芳香环化合物吸附于催化剂表面脱氢缩合形成;渣油性质、催化剂物化性能和工艺条件共同影响积炭形成,低黏度渣油、大孔径催化剂及较高氢分压可以减少催化剂表面积炭量;反应过程中掺杂低黏度高芳香性馏分油可以较好地抑制积炭形成。文章指出通过对固定床渣油加氢催化剂积炭问题的分析,可以达到有效抑制催化剂表面积炭和延长催化剂运转周期的目的。 相似文献
15.
介绍新一代FZC系列渣油加氢处理催化剂的工业应用。新一代FZC系列渣油加氢处理催化剂性能显著提高,催化剂体系具有高的容金属能力和抗结焦能力,活性和稳定性好,能够有效保证装置长周期稳定运行,催化剂整体加氢性能显著提升。工业应用表明,新一代FZC系列渣油加氢处理催化剂能够很好满足用户要求。 相似文献
16.
17.
18.
Preparation of heavy oil hydrotreating catalyst from spent residue hydroprocessing catalysts 总被引:1,自引:0,他引:1
In recent years, increasing emphasis has been placed on recycling spent hydroprocessing catalysts due to environmental regulations which list them as hazardous waste materials. In the present work, the recycling of spent residue hydroprocessing catalysts that contained high levels of vanadium was investigated by using them in the preparation of active new hydrotreating catalyst after subjecting them to different treatments such as decoking, acid-leaching and hydrothermal treatment. Catalyst extrudates containing different levels of V, Mo and Ni on Al2O3 were prepared by mixing the spent catalyst powder with boehmite in different proportions followed by peptization, kneading and extrusion. The prepared catalyst extrudates were characterized by chemical analysis and surface area and porosity measurements. The HDS and HDM activities of the catalysts were tested using Kuwait atmospheric residue as feed and compared with that of a reference HDM catalyst. Partial leaching of vanadium from the spent catalyst opened up the pores, and the catalyst prepared by mixing the metal-leached spent catalyst (MLSC) with boehmite had higher surface area and pore volume and showed higher hydrotreating activity than that prepared from unleached spent catalyst. Hydrothermal treatment of the spent catalyst increased its porosity and surface area. Catalysts prepared from hydrothermally treated spent catalyst (HTSC) had higher surface area and pore volume and showed higher HDM and HDS activities than that prepared from the spent catalyst without hydrothermal treatment. The catalysts prepared from the treated spent catalysts also exhibited substantially higher HDM and HDS activities than the reference commercial HDM catalyst. The results indicate that spent catalysts containing high levels of vanadium together with Mo and Ni on Al2O3 can be used in the preparation of active HDM/HDS catalysts, and thereby, their environmental problem can be reduced. 相似文献