共查询到20条相似文献,搜索用时 15 毫秒
1.
提出了一种带两股循环的三塔变压精馏结构用于分离乙醇(C2H5OH)/乙酸乙酯(C4H8O2-3)/2-丁酮(C4H8O-3)三元混合物。由该三元混合物的剩余曲线图(RCM)可知,在大气压下该混合物的每一对组元均形成二元最低共沸物,且乙醇/乙酸乙酯二元共沸物组成随压力变化敏感。三个最低共沸物的同时存在形成了精馏边界线夹紧点现象,而通常压力下的精馏塔无法跨越,以至于传统变压精馏无法应用。通过对精馏塔压力的最优化克服了这一困难,提出了新的分离流程,并对过程进行严格稳态模拟。针对初分塔(T1)塔压不同的6种流程,采用序贯迭代法对各塔的塔板数、进料板位置、回流比等参数进行了优化。通过对比6种流程的经济评价和比较,得到了T1塔的最优压力,并经过能量集成使得过程的年度总费用降低了14.88%。 相似文献
2.
基于高效分离共沸物的目的,实验采用内部具有毛细管结构的活性氧化铝颗粒作为精馏填料,对乙酸乙酯-乙醇进行分离,为开发一种填料毛细管精馏技术高效分离共沸物提供研究基础。文中主要考察了原料组成、回流比和填料高度等单因素对塔顶乙酸乙酯纯度的影响,并通过均匀设计实验确定了最佳组合因素条件,然后又考察了活性氧化铝填料的回收使用情况,得出单因素最佳条件分别为:质量分数w_(F1)=70%,R=5,H=1.5 m;最佳组合因素条件为:质量分数w_(F1)=81%,R=5.86,H=1.39 m;填料回收:活性氧化铝填料重复使用仍可达到原始最佳水平,具有良好的回收再利用价值。 相似文献
3.
4.
乙酸乙酯和正己烷均为重要的有机溶剂,广泛应用于医药、橡胶、油漆等领域。由于乙酸乙酯和正己烷常压下形成共沸物,需采用特殊工艺对其进行分离。基于乙酸乙酯-正己烷二元共沸体系的压力敏感性,利用Aspen Plus软件,以年度总费用(TAC)最小为目标函数,模拟和优化了变压精馏稳态工艺,其中高压塔和低压塔的操作压力分别采用6 atm和1 atm,所得乙酸乙酯和正己烷产品纯度均大于99.9%。在此基础上,利用Aspen Dynamics软件考察了变压精馏工艺不同控制方案的有效性。结果表明:Q_R/F比例控制结构能够有效地应对进料流量扰动,且响应速度快,但在处理进料组分干扰时稍显不足。组分-温度串级控制能有效的改善进料组分扰动对产品纯度的影响。Q_R/F比例控制结构与组分-温度串级控制结构联用在变压精馏工艺中可实现稳健的控制,能够有效保证乙酸乙酯和正己烷产品纯度。 相似文献
5.
6.
基于乙醇-氯仿二元共沸体系的压力敏感特性,利用Aspen Plus软件,以年度总费用(TAC)最小为目标函数,模拟和优化了变压精馏稳态工艺,所得乙醇和氯仿产品纯度均大于99.9%(质量分数).利用稳态模拟考察了不同热集成变压精馏工艺的经济性.利用Aspen Dynamics软件考察了不同热集成变压精馏工艺的动态特性,建立了不同热集成变压精馏工艺的稳健控制方案.结果表明:完全热集成工艺与无热集成和部分热集成工艺相比,经济性最优;组成-温度串级控制结构可较好地控制无热集成和部分热集成流程,压力-补偿温度控制结构在完全热集成工艺中可实现稳健的控制;虽然完全热集成工艺经济性最优,但部分热集成工艺的可控性优于完全热集成工艺.本文研究对工业分离含低碳醇的二元共沸物热集成变压精馏工艺有一定的参考价值. 相似文献
7.
《现代化工》2017,(5)
以离子液体1,3-二甲基咪唑磷酸二甲酯盐([DMIM]DMP)为萃取剂,分离乙醇和2-丁酮共沸体系。采用Aspen Plus流程模拟软件,对乙醇和2-丁酮体系的萃取精馏过程进行了模拟。考察了溶剂比、全塔理论塔板数、原料进料位置、萃取剂进料位置和回流比等因素对分离效果的影响,获得了萃取精馏分离乙醇和2-丁酮体系的最佳工艺优化条件为:萃取精馏塔的全塔理论板数为22,原料和萃取剂进料位置分别为第11块和第3块理论板,回流比为0.5,溶剂比为0.5。在此条件下,产品2-丁酮的摩尔分数达到99.98%,乙醇的摩尔分数达到99.99%,再生的萃取剂[DMIM]DMP的摩尔分数达到100%。说明以[DMIM]DMP为萃取剂萃取分离乙醇和2-丁酮共沸物具有很好的效果。 相似文献
8.
基于变压精馏分离乙酸乙酯/正己烷共沸体系两塔的温差,利用Aspen Plus软件,以年度总成本最小为目标函数,对部分及完全热集成变压精馏工艺进行了稳态模拟及优化。在此基础上,利用Aspen Dynamics软件开发了多种控制结构,通过引入不同进料流量及组成的扰动测试控制结构的有效性。结果表明,完全热集成变压精馏工艺比部分热集成变压精馏工艺的经济性稍好。动态响应结果表明,部分热集成变压精馏工艺的压力?补偿温度控制结构可有效处理不同程度的干扰,能有效提高控制结构对干扰的响应速度,缩短达到新稳态的时间,保证乙酸乙酯和正己烷产品纯度在99.9wt%之上;而完全热集成变压精馏工艺的组分?温度串级控制结构仅能处理较小的组分和流量干扰,实现稳健控制,无法处理较大的干扰。综合比较两种工艺的经济性和可控性,认为部分热集成变压精馏工艺分离乙酸乙酯/正己烷共沸体系优于完全热集成变压精馏工艺。 相似文献
9.
10.
11.
12.
测定了101.3 kPa下乙醇-碳酸二甲酯(DMC)和DMC-糠醛二元体系的汽液平衡数据,以及乙醇-DMC-糠醛体系在溶剂比为1∶1时的三元汽液平衡数据。结果表明,糠醛的加入可以改变乙醇和DMC的相对挥发度,并且当糠醛的摩尔分数大于0.25时,乙醇-DMC二元物系的共沸点消失。因此,可以采用萃取精馏的方法以糠醛为溶剂分离乙醇和DMC的混合物。采用Aspen Plus软件对连续萃取精馏分离乙醇-DMC共沸物的过程进行了模拟。结果表明,单塔带侧线采出的操作方式比双塔操作方式更有优势。 相似文献
13.
14.
15.
利用COSMO-SAC模型对常用萃取剂进行筛选,进而确定对二甲苯适合作为分离乙醇-丙酸乙酯二元共沸物系的萃取剂,并利用汽液平衡实验验证了所选萃取剂的分离效果。结果表明对二甲苯能够分离乙醇-丙酸乙酯共沸物系。采用Aspen Plus模拟软件对乙醇-丙酸乙酯-对二甲苯三元体系进行了连续萃取精馏模拟,并获得了适宜的工艺参数:萃取精馏塔中,理论塔板数为60块,原料进料位置为第50块塔板,萃取剂进料位置为第25块塔板,回流比为7,溶剂比为0.8,塔顶乙醇的含量可达到99.85%;溶剂回收塔中,理论塔板数为30块,进料塔板的位置为第11块塔板,回流比为6,塔顶得到丙酸乙酯的质量分数为99.0%。 相似文献
16.
离子液体萃取精馏分离乙醇-环己烷共沸物 总被引:3,自引:0,他引:3
在0.101 MPa压力下,测定了不同离子液体对乙醇-环己烷共沸物相对挥发度的影响,研究了溶剂比(萃取剂与原料液体积比)对体系相对挥发度、离子液体加入速率和回流比对萃取精馏的影响,按实验确定的最佳工艺条件进行了重复实验. 结果表明,离子液体作为萃取剂可以消除乙醇-环己烷物系的共沸点,提高该物系的相对挥发度. 采用[bmim]PF6作为萃取剂,溶剂比为0.5,离子液体加入速率为6 mL/min,回流比为3,可得到纯度大于99.8%的环己烷. 釜液采用闪蒸分离回收乙醇和离子液体,乙醇的回收率达99.9%以上. 离子液体的循环使用不影响分离性能. 相似文献
17.
采用液液萃取进行丁酮-水共沸物系的分离。测定了三元体系丁酮-水-(1-乙基-3-甲基咪唑醋酸盐)的液液平衡,采用NRTL活度系数方程对液液平衡数据进行回归得到组分间的二元交互作用参数。利用流程模拟软件ChemCAD进行了以离子液体为萃取剂的液液萃取过程的模拟,研究了理论板数、溶剂比(萃取剂摩尔流量和原料摩尔流量的比值)对萃取过程的影响,通过灵敏度分析,获得了优化的操作参数。在最适宜操作条件下,丁酮的摩尔分数可达0.999 4,离子液体经过回收能够直接循环使用。 相似文献
18.
19.
乙酸甲酯和甲醇共沸物对压力变化敏感,因此采用变压精馏工艺对共沸物进行高效分离。低压塔和高压塔压力分别设置为101.325 kPa和810.600 kPa。基于相图分析,确定了精馏序列和工艺流程。以年度总费用(TAC)最小为原则,优化了进料位置、回流比、塔板数等设计变量,确定了最佳工艺参数。工艺优化完成后,通过调节双塔的回流比,对高压塔的冷凝器和低压塔的再沸器进行了完全热集成。由结果可知:在低压塔回流比为0.9,高压塔回流比为2.07时,完全热集成变压精馏工艺的TAC最小。相比无热集成的变压精馏工艺,完全热集成工艺的设备投资和能耗费用均明显降低,最终TAC费用节约31.40%,在经济上更合理,也为类似的共沸物分离工艺提供了一定的技术参考。 相似文献
20.
《化学工业与工程技术》2016,(1):48-54
采用高低压两塔精馏流程,对甲基异丁基酮/正丁醇共沸物进行分离,确定了高低压塔的压力分别为405.30 k Pa和20.27 k Pa。基于最小年度总费用(TAC)对甲基异丁基酮/正丁醇变压精馏分离工艺进行经济优化。运用Aspen Plus软件考察了变压精馏工艺不同控制方案的有效性。结果表明:组成-回流比串级控制方案可以有效的处理无热集成、部分热集成变压精馏工艺的±20%进料流率与组成扰动,产品的纯度非常接近其期望值,且响应速度快;对于完全热集成变压精馏工艺,采用压力-补偿温度控制结构能够实现稳健的控制。综合TAC与控制方案的分析,认为部分热集成变压精馏工艺为该体系的最优变压精馏工艺。 相似文献