首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
PAN基活性炭纳米纤维的制备及其对金的吸附研究   总被引:1,自引:0,他引:1  
采用静电纺丝技术,制备了聚丙烯腈纳米纤维,并以聚丙烯腈纳米纤维为前驱体,制备了PAN基活性炭纳米纤维,并对PAN基活性炭纳米纤维吸附金的性能进行了初步研究,取得了令人满意的结果。  相似文献   

2.
研究了以无烟煤为原料,通过预炭化、再采用KOH活化法制备煤基活性炭的工艺。利用场发射扫描电子显微镜(SEM)研究了活性炭的显微结构,并测试了活性炭对甲基橙(MO)的吸附性能。结果表明:无烟煤炭化产物与KOH质量比(炭碱比)、活化温度、活化时间对煤基活性炭显微结构及吸附性能有显著影响。在炭碱比为1∶1、活化温度为900℃、活化时间1h的条件下,能制备出吸附性能良好的活性炭材料,吸附15min时对MO的吸附率可达到89.6%。  相似文献   

3.
以废弃的芋叶柄为原料,K2CO3为活化剂,制备芋叶柄基活性炭,考察炭化和活化工艺条件对活性炭吸附性能的影响,采用等温氮吸脱附测试、扫描电子显微镜(SEM)对样品材料进行了测试。结果表明:若以碘吸附值作为评价指标,最佳工艺条件为K2CO3浓度200g/L、活化温度850℃、活化时间35min,碘值为1930.4mg/g,BET比表面积为633.215m2/g,孔容为0.194cm3/g,孔径为18.45nm。以亚甲基蓝吸附值作为评价指标,最佳工艺条件为K2CO3浓度175g/L、活化温度875℃、活化时间35min,亚甲基蓝吸附值为298.8mg/g,BET比表面积为604.708m2/g,孔容为0.076cm3/g,孔径为18.533nm。  相似文献   

4.
炭化温度对CO2活化PAN基活性炭纤维微结构的影响   总被引:3,自引:0,他引:3  
将PAN坝氧化纤维在400℃~900℃炭化,经CO2活化得到一系列活性炭纤维,表征了其比表面、孔容和孔径分布等微结构参数,研究了炭化温度对CO2活化PAN基活性炭纤维微结构的影响。结果表明,炭化温度对活性炭纤维的比表面和孔结构有显著影响,适中的炭化温度(600℃)有利于得到高比表面积、大的孔容和孔径。  相似文献   

5.
主要介绍了活性炭纤维对SO2气体的吸附性能特点,同时还分别介绍了单纯活性炭纤维、物理改性和化学改性活性炭纤维在吸附SO2方面的研究成果,并对活性炭纤维吸附SO2研究和发展趋势进行了展望。  相似文献   

6.
以煤质炭化料为原料,分别以水蒸气和CO2为活化介质制备出微孔结构发达的活性炭。利用N2吸-脱附等温线、碘吸附值、亚甲基蓝吸附值、CO2吸附容量、CO2解吸率和扫描电子显微镜(SEM)对其进行表征。结果表明,在实验室条件下,水蒸气法和CO2法制备样品的孔径均以0.5~1.0 nm的微孔为主,在同等条件下,CO2法制备样品0.5~1.0 nm范围的微孔含量要比水蒸气法制备样品多10%以上。同时水蒸气法制备样品的中孔分布范围为2.0~3.0 nm,CO2法制备样品中孔分布范围为2.0~2.5 nm。在同等实验条件下,水蒸气活化制备出活性炭比CO2的孔径分布更广,活性炭的亚甲基蓝吸附值、碘吸附值及CO2解吸率更高,而CO2法制备出的样品对CO2的吸附容量更大。  相似文献   

7.
稻壳基活性炭的制备及其CO2吸附性能   总被引:1,自引:0,他引:1  
通过探究不同的实验条件对所制备的活性炭性能的影响,确定了稻壳活性炭的最佳制备工艺条件为炭碱比(PAM)1:2、活化温度800℃、活化时间30 min.研究活性炭对CO2的吸附特性表明活性炭对CO2的吸附以物理吸附为主.X射线光电子能谱分析(XPS)、微观形貌观察及红外光谱分析表明K O H具有优异的造孔能力,可有效去除...  相似文献   

8.
以蔗渣为原料, 以ZnCl2为活化剂制备出活性炭AC, 并用KOH对活性炭AC进行二次活化制备活性炭KAC。用热重法测定材料的CO2吸附脱附性能, 傅里叶红外光谱、氮气物理吸附-脱附和扫描电镜对样品进行表征。结果表明:KAC具有优异的CO2吸附性能, 在60℃下其对CO2吸附量可达3.45 mmol/g, 而AC的CO2吸附量仅有1.79 mmol/g。KAC的CO2吸附能力明显优于AC。循环吸附脱附的结果表明, 经过5次吸附-脱附, 材料的吸附量无显著变化, 表明材料具有良好的再生性能。傅里叶红外分析结果表明两种活性炭材料的特征峰基本一致, 活性炭表面官能团中羟基和羧基可以使活性炭表面的极性增大。氮气物理吸附-脱附和扫描电镜结果表明材料都具有发达的孔径结构, 但KAC的孔径结构比AC更发达, 因此其对CO2的吸附能力也更强。  相似文献   

9.
活性炭表面改性及其对CO_2吸附性能的影响   总被引:2,自引:0,他引:2  
采用硝化-还原法对高比表面积活性炭进行改性以提高其对CO2的吸附性能。利用氮吸附、FT-IR、元素分析、XPS等方法对改性前后的样品进行表征,并通过高压吸附装置测试CO2吸附性能。结果表明,改性样品对CO2的吸附量在室温下和319.15K下分别为17.72mmol/g和14.01mmol/g,比原样分别提高了49%和70%(单位比表面积吸附量的增加幅度),这可能与改性样品的表面连接了碱性较强的伯氨基等含氮官能团有关。改性样品经4轮缓和条件下的吸附-脱附循环后,吸附量未明显下降,表明改性样品仍以物理吸附为主。  相似文献   

10.
利用碳酸钠对稻壳进行水热脱硅,得到脱硅稻壳炭(RHC),并以RHC为原料,分别使用一定浓度的NaOH、H3PO4和ZnCl2在一定温度下对RHC进行活化改性制得稻壳基脱硅活性炭(RHAC)吸附剂,并依据RHAC对正己烷的静态吸附率进行实验条件优选,并对优选条件下制得的RHAC进行油气动态吸附实验及其物性参数表征。结果表明:H3PO4溶液活化RHC制备RHAC为最佳活化剂,最优实验条件为H3PO4溶液浓度34%,浸渍时间6h,活化时间60min,活化温度500℃;RHAC对油气的饱和吸附率为26.39%,比表面积为823.68m2/g,总孔容为0.645cm3/g,平均孔径为2.163nm。  相似文献   

11.
活性炭纤维的制备及其对硫醇的吸附脱除性能   总被引:5,自引:0,他引:5  
研究了沥青基活性炭纤维(PACF)的制备条件,如活化温度、活化时间对产品收率、比表面积以及对正充醇吸附性能的影响。结果表明,单纯的PACF不能吸附己烷中的正丁硫醇,PACF负载钴盐后,可用于脱除硫醇,用于负载钴盐的PACF的活化温度对脱除硫醇效果无影响,但活化时间必须在90min以上,才能使硫醇含量降到10ppm以下。  相似文献   

12.
采用山竹壳为原料制得山竹壳基生物质活性炭。确定了较佳的制备条件:在尿素酸溶液∶碳=1∶1(质量比)的浸渍比下,浸渍时间15h,活化温度750℃,活化时间60min,制得的山竹壳基生物质活性炭比表面积为545.68m2/g。在亚甲基蓝溶液pH=4.5、初始浓度为25mg/L,山竹壳基生物质活性炭用量为0.06g条件下,山竹壳基生物质活性炭对亚甲基蓝的吸附量达到68.75mg/g。  相似文献   

13.
14.
赵朔  裴勇 《材料导报》2012,26(4):87-90
以笋壳为原料,采用氯化锌活化法制备活性炭,通过正交试验研究了氯化锌与笋壳质量比、氯化锌溶液浓度、活化温度、活化时间等因素对笋壳基活性炭的活化收率、碘吸附值和亚甲基蓝吸附值的影响。研究表明,活化温度对活性炭性能的影响最显著;氯化锌活化法制备笋壳基活性炭的最佳条件为:m(氯化锌)/m(笋壳)=2:1,氯化锌溶液浓度为5%,活化温度为600℃,活化时间为90min。采用氮气吸附-脱附法对最佳条件下制备的活性炭进行表征,结果表明,该条件下制备的活性炭为中孔型活性炭。  相似文献   

15.
用比表面积1183m2/g的活性炭和酚醛树脂分别作为吸附剂和粘结剂,考察了成型工艺对活性炭孔结构及其CO2吸附性能的影响。结果表明,活性炭成型后,比表面积有所下降,但对成型活性炭进行CO2二次物理活化可使其比表面积提高60.7%;粘结剂含量为30wt%、成型压力10MPa条件下所制的成型活性炭在800℃用CO2二次活化2h后,其比表面积、压缩强度和对CO2的平衡吸附量分别为1323m2/g、12.7MPa和0.67mmol/g。  相似文献   

16.
优化制备工艺,改善吸附性能,一直是活性炭研究的热点问题之一。研究了宁夏无烟煤基活性炭的制备及其吸附性能。分别通过混合、氯化锌化学活化、酸洗、中和和烘干等步骤,得到活性炭并测定了碘值。另外,通过活性炭对甲基橙溶液的吸附性能,运用正交试验法,分析了温度、甲基橙溶液浓度、活性炭用量和吸附时间等4个因素对吸附效果的影响。最佳吸附条件为:活性炭用量1.5g、吸附时间20min、甲基橙溶液的浓度30mg/L、温度50℃,此时脱除率达96.23%。  相似文献   

17.
改性活性炭对苯废气吸附性能的研究   总被引:31,自引:4,他引:31  
对低浓度含苯废气的有效去除方法之一是活性炭吸附法。针对治理工业含苯废气,研制了高吸附量、低成本的活性炭。亦即,通过对普通煤质活性炭进行酸碱改性处理,除去酸碱可溶性物质,使活性炭的灰分大大降低,从而提高了活性的比表面积,同时,提高了活性炭的吸附活性。进而,通过研究不同的改性方法对活性炭的苯饱和吸附量、比表面积、孔径及灰分的影响,确定了最佳改性方法。研究结果表明:采用酸、碱交替改性方法处理普通活性炭,是提高活性炭的苯吸附量、增大比表面积的简单有效方法。  相似文献   

18.
通过水蒸气活化法制备了聚苯乙烯基球形活性炭,并研究了其对二苯并噻吩(DBT)的吸附性能.采用扫描电镜(SEM)、N2吸附、热重分析(TG)以及液相吸附试验考察了球形活性炭的结构特征.结果表明:以苯乙烯离子交换树脂为原料,通过水蒸气活化法,可以得到比表面积979m2/g~1672m2/g的球形活性炭.其中,BET比表面积和孔容随活化时间和水蒸气流量的增加而增大,而孔径小于0.7 nm的窄微孔却减小.球形活性炭对DBT的吸附量可达109.36mg/g,吸附量与比表面积和总孔容关系不大,而与小于0.7nm的窄微孔成正比.球形活性炭在对DBT的吸附过程中存在不可逆吸附.球形活性炭所含窄微孔的孔容越大,脱附所需要的温度越高,不可逆吸附量越大.  相似文献   

19.
混合活化制备稻壳基活性炭研究   总被引:3,自引:0,他引:3  
陈俊英  冯向应  史召霞 《功能材料》2012,43(23):3278-3281
以脱硅稻壳灰为原料,采用混合活化法制取活性炭,通过4种单一活化剂物料比的实验,确定了最佳物料比为1∶3;设计了5种混合活化的配比方案,实验结果表明在NaOH&Na2CO3和KOH&K2CO3配比为2.5∶0.5时碘吸附值和亚甲基蓝吸附值分别达到最优,说明辅助活化剂的加入可有效提高稻壳基活性炭的吸附性能。在总物料比和活化剂混合配比确定的条件下,进行了浸渍液质量分数、活化温度、活化时间3个单因素实验,结果显示,浸渍液质量分数为30%、活化温度为500℃、活化时间为40min时活化效果最佳,其中碘吸附值最高可达1528.76mg/g,可知混合活化对制备稻壳基活性炭有显著作用。  相似文献   

20.
以乙醇胺(MEA)、二乙醇胺(DEA)、二乙烯三胺(DETA)和四乙烯五胺(TEPA)物理浸渍后的白色玻璃状无定型硅胶(Q)作为CO_2吸附剂,考察了有机胺负载量、有机胺分子链长短和羟基数量对CO_2吸附性能的影响以及吸附剂的再生性能。实验结果表明:50%TEPA-Q具有最大的CO_2吸附量,为2.589mmol/g。经过10次吸附-真空脱附循环后,50%TEPA-Q的CO_2吸附能力仅下降了8.034%,具有较好的循环稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号