首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究齿面偏差对齿轮啮合刚度的影响,对准确获得齿轮系统动态特性具有重要意义。本文基于改进能量法,提出了一个求解考虑齿面摩擦的直齿轮啮合刚度的完整模型。该模型通过齿廓的参数方程,实现考虑齿轮加工刀具圆角半径和齿面偏差对齿轮单齿啮合刚度的影响;通过齿形误差带来的齿间间隙和轮齿加载变形量的关系,求解出双齿啮合区齿轮副总刚度。分析了磨损齿轮和修形齿轮的啮合刚度、齿间载荷分配系数和传递误差。结果表明:齿面非均匀磨损量会显著降低双齿啮合区刚度并降低重合度,轻载条件下尤为严重;修形齿轮载荷大于修形设计载荷值时,修形效果不明显,而载荷小于修形设计载荷值时,可能出现刚度不足、重合度减小和加载传动误差显著增大等问题。  相似文献   

2.
为改善面齿轮啮合性能,设计了小轮齿廓、齿向修形曲线,将3次B样条拟合的修形曲面与小轮理论齿面叠加构造精确的拓扑修形齿面,建立了小轮拓扑修形面齿轮副TCA、LTCA计算模型,并试验验证了理论分析的正确性。算例分析表明:小轮拓扑修形能获得开口向下2阶抛物线几何传动误差,接触路径与齿根倾斜,较传统面齿轮副,有效重合度提高了约10%,容差能力提高了400%;各载荷下承载传动误差波动幅值均减小,齿面载荷分布变化均匀,轮齿进入和退出啮合时承受载荷变小。  相似文献   

3.
齿面修形是提高齿轮副啮合性能的重要手段.为了提高啮合传动特性,对斜齿轮采用沿齿廓方向抛物线修形的齿面结构.结果表明,修形的斜齿轮传动啮合特性明显改善,接触路径沿两齿面齿长方向分布,恰当选择修形因数,可有效避免边缘接触;在存在轴夹角误差的条件下,几何传动误差为不连续直线段,因而振动和噪声不可避免;啮合区域对安装误差不敏感,在未对准安装的条件下,啮合印痕向轮齿两端仅有较小的偏移.  相似文献   

4.
通过分析一对啮合齿轮的综合刚度变化,提出齿廓最大修形量的计算方法,并确定修形曲线方程及修形长度.利用ANSYS软件对修形后的齿轮进行有限元接触分析,验证了齿廓修形可以有效减小齿面载荷冲击.最后提出了修形齿轮的批量加工方法.  相似文献   

5.
高速内啮合人字齿轮多目标优化修形   总被引:2,自引:1,他引:1  
为提高高速内啮合人字齿轮的啮合性能,提出一种考虑弹性轴支撑变形的齿面多目标优化设计方法.通过轮齿接触分析和承载接触分析计算齿面接触线离散点载荷以及一个啮合周期的轮齿承载变形.应用基于混合弹流润滑模型的摩擦系数回归方程确定离散点的局部摩擦系数,利用Blok闪温公式求得高速啮合传动的齿面闪温.以承载传动误差幅值最小、齿面闪温最小、齿面载荷分布均匀为优化目标,采用遗传算法确定齿面最佳修形量.实例计算结果表明:在无误差角和有误差角两种情况下,齿面修形后,承载传动误差幅值都大幅下降,啮入区和啮出区齿面闪温都明显降低;由于避免了边缘接触,齿面载荷分布得到了有效改善.提出的优化设计方法结果可靠,是高速齿轮修形设计的有效手段.  相似文献   

6.
文章从减振降噪和提高工效出发,小轮齿廓采用三段修形。通过改变齿条刀切削刃的形状,以三段抛物线代替齿条刀的直线齿廓,推导出了齿条刀的齿面方程,并给出了轮齿端面齿廓修形量的计算方法。以承载传动误差最小为目标函数,采用复形调优法进行优化,可以获得最佳修形参数。以一对试验人字齿轮为例,通过对修形前后承载传动误差、啮合振动和噪音的比较,验证了该修形优化方法的可行性。  相似文献   

7.
针对变速器工作过程中齿轮偏载、接触载荷及传递误差过大的问题,在Romax中建立变速器模型并通过试验验证模型的可靠性;以六档齿轮副的接触斑、单位长度载荷、传递误差峰-峰值及最大接触应力为优化目标,基于螺旋线修形与齿廓修形理论提出一种修形方案;修形后接触斑改善、传递误差峰峰值降低、单位接触载荷及最大接触应力降低,且在150 Nm工况下效果最明显,有效改善了轮齿啮合状况,使齿面载荷分布更加均匀,提高了齿轮的传动性能和承载能力。  相似文献   

8.
考虑多工况下兆瓦级风电齿轮箱各齿轮副具有不同的啮合特性,提出了一种齿轮修形的优化方法.基于Romax Designer软件对某兆瓦级风电齿轮箱齿轮进行多工况仿真分析,定位啮合特性各异的问题齿轮副;采用现有修形公式初算问题齿轮副各修形量,分析了各修形量在微调范围内齿轮齿面单位载荷与传动误差幅值的变动趋势;依据该变动趋势及齿轮啮合特性的差异,提出了一种判断优化目标函数单调性的修形量寻优方法.寻优结果表明,修形后齿轮齿面载荷分布和传动误差幅值明显优化,兆瓦级风电齿轮箱齿轮振动噪音及破坏的情况明显改善.  相似文献   

9.
斜齿球形齿轮齿面接触分析   总被引:1,自引:0,他引:1  
为了提高球形齿轮承载能力和降低啮合质量对安装误差的敏感性,对斜齿球形齿轮齿面进行了修形.用产形齿条方法和啮合理论,推导斜齿球形齿轮齿面数学模型,并用抛物线形齿廓刀具对齿面修形;根据两齿面在啮合接触中连续相切条件,建立了含有安装误差的齿面接触分析(TCA)模型.齿轮副啮合仿真结果表明:凸-凹型斜齿球形齿轮副接触迹线沿着齿...  相似文献   

10.
为了改善齿轮副轴线角误差对其传动性能的影响,文中提出了轴线角误差的斜齿轮拓扑修形新方案,用圆弧齿廓刀具展成加工齿轮,齿向采用高阶非对称鼓形修形.利用齿轮啮合原理、齿面接触分析和齿面承载接触分析技术,研究了齿向不对称修形参数(两侧最大修形量和最大修形长度)对承载传动误差的影响,设计了合理的不对称修形参数.仿真结果表明当轴线角误差γ_1为0.05′时采用最大修形长度不对称的设计承载传动误差最大波动量减少了42.85%,提高了齿轮传动性能;当轴线角误差γ_2为0.05′时采用最大修形量不对称的设计承载传动误差最大波动量减少了53.47%,提高了齿轮传动性能.  相似文献   

11.
摆动活齿传动中心轮热分析   总被引:2,自引:0,他引:2  
根据摆动活齿传动的啮合原理,利用摩擦学、布洛克理论,分析了在摆动活齿传动中,活齿与中心轮啮合副产生的摩擦热流的计算方法,并建立了中心内齿轮本体温度的有限元分析模型。通过计算实例,计算分析了中心内齿轮的稳态温度场的分布情况和本体温度场对转速、载荷和润滑油温度的敏感特性。算例表明,中心轮的最高温度区域分布在工作齿面齿廓曲线的拐点附近,并且中心轮的本体温度随着转速、载荷和润滑油温度的增大而升高,但温度场的分布状况保持不变。研究结果对进一步的内齿轮热变形的计算和齿廓修形提供了理论依据,对改善摆动活齿传动的传动性能有一定指导意义。  相似文献   

12.
凸轮激波滚动活齿传动内齿轮齿廓修形方法   总被引:1,自引:0,他引:1  
为了对凸轮激波滚动活齿传动中心内齿轮的齿廓修形进行研究。基于中心内齿轮齿形方程及数控加工提出了4种单参数修形方式,给出了考虑各参数增量的内齿轮通用齿形方程.结合单参数微量调整对齿形几何形状影响趋势的分析以及传动过程中中心内齿轮齿廓的受力特点,提出了顶根复合及转角一顶根复合2种齿形复合修形方法,给出了修形分析示例,通过复合修形可以获得预期的齿形微量修削效果.  相似文献   

13.
考虑到安装误差、轴弯曲变形及扭转变形对齿面载荷分布的影响,根据人字齿轮传动的特点,提出小轮轴向浮动安装的齿面修形优化设计方法;通过3次B样条将齿向修形曲线拟合为三维修形曲面,并与理论齿面叠加构造修形齿面,建立轴向串动的齿面接触分析(TCA)模型,结合承载接触分析(LTCA)模型对有轴向串动的人字齿轮传动进行仿真,轴向串动保证了两端齿面各承担一半的扭矩,人字齿轮的修形可认为是一个斜齿轮的修形,即只考虑一端修形,另一端修形则与之对称;以齿面载荷密度最小为优化目标,应用遗传算法确定最佳修形齿面. 算例表明:轴向串动是左右齿面间隙相互补偿的过程,串动后两边齿面载荷分布基本相同,修形后两端齿面载荷达到均匀;人字齿轮齿向修形与轴向串动相互补充,保证了齿面载荷整体上均匀.  相似文献   

14.
斜齿轮高阶传动误差设计与分析   总被引:1,自引:0,他引:1  
为了改善斜齿轮副啮合传动性能,提出了应用四阶传动误差函数曲线,采用数控加工展成斜齿轮.利用抛物线齿廓的产形齿条与圆柱齿轮啮合推导小轮齿面方程.采用假想小轮的方法推导了四阶齿线修形大轮齿面数学模型.根据两齿面在啮合中连续相切条件,建立了含有误差的轮齿接触分析模型(TCA).仿真结果表明:该设计降低了接触印痕对安装误差的敏感性,相邻两个啮合周期的啮合转换点处,传动误差曲线的切线夹角接近180°,降低振动及冲击.  相似文献   

15.
为了提高面齿轮传动的承载能力,改善齿轮副啮合传动时的动态性能,以齿面接触分析和承载接触分析为工具,通过齿面曲线修形调整接触迹线方向,提出设计面齿轮副大重合度的方法.利用盘形刀具对小齿轮沿齿长方向抛物线修形,降低啮合印痕对安装误差的敏感性.以重合度和承载传动误差的振动幅值为目标,给出了大重合度面齿轮传动优化设计流程.引入了啮合齿对系数的概念,对齿轮副的重合度进行了计算.研究结果表明:通过齿轮副抛物线修形因数和抛物线顶点参数,以及沿小齿轮齿向修形因数的设计与调整,可设计出动态性能良好,重合度高达3.0以上的面齿齿轮副,为高负载的面齿轮传动设计提供了依据.  相似文献   

16.
为提高齿轮副承载能力和降低对安装误差的敏感性,提出一种拓扑修形的齿面结构。根据齿廓分段修形和齿向分段修形原理推导出拓扑修形齿面方程,构建含安装误差的修形齿轮副的接触分析(TCA)模型。并对轮齿接触分析和有限元分析,仿真出传动误差和齿面接触应力与剪切力在不同安装误差情况下的分布特征。根据应力分布曲线分析,齿轮副啮入与啮出点的应力幅值相比均值有所下降,为减振降噪创造了良好条件。滚检实验与仿真结果表明,基于成形法磨削的拓扑修形对改善齿面接触印痕,避免边缘接触和降低对安装误差的敏感性具有一定的应用价值。  相似文献   

17.
高阶传动误差斜齿轮修形设计与加工   总被引:2,自引:1,他引:1  
为了提高齿面啮合性能,降低磨削误差,设计高阶传动误差与接触路径曲线,并结合承载接触分析(LTCA)通过优化承载传动误差(LTE)幅值最小确定待定的参数,根据齿条展成渐开线齿面原理,求解小轮法向拓扑修形曲面;建立基于成形砂轮轴向廓形与5轴联动CNC机床各轴运动敏感性分析的齿面修形模型,判断砂轮与齿面的接触状态,计算磨削误差,应用PSO优化算法得到机床各轴运动参数与砂轮廓形的修形曲线. 算例表明:优化的高阶传动误差在曲线转换点处是相切连接的,其拓扑修形曲面在啮入端近齿根、啮出端近齿顶处有较大的修形量,修形区域近似对角;中部有一定微小内凹的高阶传动误差可降低LTE幅值,减小轮齿振动,其内凹量大小与齿轮副工况有关,随载荷增加,最佳内凹量逐渐增大;经过成形砂轮进行主要的修形磨削及平面砂轮进行辅助的对角修形磨削可实现拓扑修形齿面加工,理论磨削误差小于2 μm.  相似文献   

18.
根据齿轮啮合原理,基于MASTA建立了齿轮传动系统模型。在对齿轮进行模拟装配后,利用MASTA的微观修形模块对齿轮进行了修形分析,得到了齿轮修形前后的传递误差图、振幅以及接触斑点分布图。将修形前后的各图进行对比后发现,齿面接触面积和接触偏载情况均得到明显改善,传递误差明显减小,验证了基于MASTA对齿轮进行微观修形的有效性。表明通过MASTA,可对齿轮齿面微观修形参数进行合理设计和优化,可有效改善齿轮传动时的齿面偏载,减小齿面接触应力,提高齿轮副的传动质量和承载能力。  相似文献   

19.
目的 分析轮齿的齿廓随机修形参数的振动传递误差可靠度及可靠性敏感度,验证设计修形参数的正确性,减小啮入、啮出冲击,消除应力集中现象,提高齿轮的传动精度、承载能力和使用寿命.方法 推导了含有修行量参数的啮合齿轮传递误差的计算公式,并在依靠有限元模型模拟一对修形齿轮的啮合过程的基础之上,将响应面法和Monte-Carlo方法结合起来研究了在随机修形参数下的振动传递误差可靠度及可靠性敏感度.结果 主动轮修形角度的敏感度值为0.283,是对可靠度影响最大的参数,从动轮修形量的敏感度值为-0.151,对可靠性影响最小.通过改变敏感度较大的参数和减小各随机变量的离散范围,可以有效提高齿轮振动传递误差的可靠性.结论 该方法可有效地简化复杂系统的可靠性及其敏感度的分析工作,为修形参数的优化设计奠定了基础.  相似文献   

20.
三次样条齿线圆柱齿轮齿面接触分析   总被引:1,自引:0,他引:1  
对三次样条齿线圆柱齿轮滚切加工和齿面几何接触进行了分析.在推导修形滚刀齿面方程的基础上,利用三次样条齿线滚切原理和啮合方程得到其齿面数学模型;根据两齿面在啮合中连续相切条件,建立了考虑安装误差的齿面接触分析(TCA)模型.齿面接触分析仿真结果表明,用抛物线形齿廓刀具对齿面修形,可获得抛物线型的几何传动误差,改善了啮合性...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号