首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
在乏燃料贮存和运输阶段,卸出时完好的燃料组件存在破损可能,若出现破损,裂变产物就有可能向环境释放,因此乏燃料运输容器解除密封前,需要进行运输容器内破损组件检测工作。本文提出一种破损检测方法,系统介绍了检测工艺方案、破损标志核素的确定及破损检测的可行性分析,并给出破损检测装置的详细设计。该设备已经研制成功并应用于大亚湾核电站乏燃料组件厂内转运,在国内首次检测到乏燃料运输后破损,结果表明,此检测方法可显著提高破损检测的可信度和效率,具有较高的工程应用价值。  相似文献   

2.
刘帅  唐兴龄  姚琳 《核安全》2021,(3):86-90
乏燃料转运容器是核电站乏燃料离堆干法贮存工程中的主要设备之一,用于将装载有乏燃料组件的密封贮存罐转运至混凝土贮存系统中,为整个转运操作提供辐射屏蔽和结构支撑.通过应用鱼骨图等质量工具,对转运容器的耳轴结构进行设计优化,调整耳轴加工工艺,在保证结构强度的前提下,提高了设计质量,保证了后续样机制造的顺利执行.  相似文献   

3.
为了解决某反应堆101盒乏燃料组件外运送贮,对乏燃料组件破损检测方法进行了研究,在已有技术的基础上,根据自身的需求设计、加工了新的采样系统,设计了工作流程,并给出了测量数据的判断依据。该采样系统可以在水下实现一次对一批乏燃料组件进行逐个取样,每个样品对应一个确定的组件,检测效率高。测量破损检测样品101个,根据测量结果判断出1个样品含有85Kr,其余样品不含85Kr或是85Kr的含量低于该条件下仪器的探测限,表明101盒乏燃料组件中有1盒组件包壳存在破损情况,其余组件包壳未破损。  相似文献   

4.
乏燃料运输容器内盖上的排气/排水孔盖作为容器包容边界之一,采用双○型金属密封圈,在容器装载乏燃料组件后需对排气/排水孔盖进行氦泄漏检测。ENUN 24P乏燃料运输容器调试过程中,发现原泄漏检测工具存在孔盖与密封面对中困难、操作复杂、易损坏密封面、增加操作人员受照风险和检测方法未考虑本底值等问题。针对以上问题,提出了改进检测工具和增加本底测量的检测改进措施,经过试验验证改进后的检测工具能有效地加快泄漏检测时间,操作简便,并减少操作人员受照剂量。改进后的检测工具也可应用于国内已有的NAC-STC型乏燃料运输容器排气/排水孔盖泄漏检测。  相似文献   

5.
毋涛 《辐射防护通讯》1993,(2):50-52,F004
符合国际原子能机构《放射性物质安全运输规定》要求的乏燃料运输容器,具有相当高的抗事故能力。但在运输过程中,仍有可能出现超过容器设计基准的冲撞(撞车、撞击山体或其它构筑物)、翻车、火灾等事故,导致乏燃料组件及其运输容器受损,向环境释放出放射性物质;或者导致运输容器屏蔽能力减弱乃至丧失,使意外接近容器的人员或公众受到较高水平的外照射。  相似文献   

6.
根据NAC-STC型乏燃料运输容器基本参数,用MCNP程序构建乏燃料运输容器、17×17压水堆乏燃料组件和简单人体模型;分别对乏燃料运输容器卡车司机和侧旁工作人员的当量剂量进行计算。计算结果表明:距乏燃料运输容器前端木质减震器1 m处的司机当量剂量为1.82 m Sv/a,距乏燃料运输容器侧面2米处侧旁工作人员的当量剂量为1.78 m Sv/a,均小于(GB18871-2002)《电离辐射防护与辐射源安全基本标准》规定的放射性工作人员剂量水平限值20 m Sv/a,乏燃料运输容器能够满足辐射屏蔽与安全的要求。计算结果将为受人工放射源照射的工人辐射剂量评估提供参考。  相似文献   

7.
常冰 《国外核新闻》1998,(12):19-19
【欧洲核学会《核新闻网》 1998年 9月14日报道】 德国反应堆安全协会 (GRS)公布了其关于影响德国乏燃料运输中的表面污染的最终报告。报告证实 ,在从德国核电厂到国外后处理厂的乏燃料运输车辆和容器以及返回该厂的空桶和空容器的表面测得污染水平超过限值。污染是在核电厂和后处理厂内装卸过程中产生的。报告还就此问题的解决办法提出了一项技术方案 ,为恢复德国乏燃料运输铺平了道路。报告证实了这样一种说法 :在核电厂乏燃料水池中进行乏燃料水下装载过程中 ,容器表面附近受到污染。放射性颗粒“积聚”在孔隙、裂缝和空穴中 (在运输…  相似文献   

8.
压水堆核电厂乏燃料组件源项计算分析   总被引:1,自引:1,他引:0  
核燃料贮存、运输以及后处理过程中的安全是构成核与辐射安全的重要内容,为保证安全性,提高运输经济性,减小后处理厂对环境的排放,须获得乏燃料组件的包络源项,因此,采用ORIGEN-ARP程序分析组件运行历史、初始富集度、燃耗深度等参数对源项的影响。运行历史在卸料初期对源项略有影响,可采用合适的保守因子予以包络,在冷却一定时间后,其影响可忽略不计;初始富集度、燃耗深度均不同的组件须经对比计算以获得包络源项。计算表明:在目前核电厂乏燃料组件中,235U初始富集度为4.45%、燃耗深度为55 GW•d/tU的AFA-3G型组件源项是包络的,可作为乏燃料水池、运输容器设计,以及后处理厂排放源项分析的初始源项。  相似文献   

9.
袁亮  杨洁 《核动力工程》2022,43(2):122-125
乏燃料转运设备核电厂内运输跌落分析是整体结构安全分析中最严苛的工况,为了解决设备跌落的动力学冲击分析评价问题,使用有限元分析模拟软件LS-DYNA对乏燃料转运设备进行数值模拟,针对典型乏燃料转运设备的跌落进行建模,并结合实际厂址条件,跌落的接触地面采用Holmquist-Johnson-Cook(HJC)模型,通过模拟计算,获得设备加速度曲线和关键位置形变量,研究结果表明:在结合厂内实际地面条件的情况下,贮存套筒变形量受跌落角度影响很大,在贮存运输过冲中应避免设备竖直姿态的跌落。本文的分析评价方法可以为乏燃料转运设备的自主化设计提供技术支持和理论依据。   相似文献   

10.
我国放射性物质运输安全监管的一项重要内容是对运输容器进行辐射屏蔽性能检测,确保其满足《放射性物质安全运输规程》的要求。在实际对乏燃料运输容器进行辐射屏蔽性能检测时反映出了一些尚需解决的问题和难点,如中子辐射水平测量的可靠性,表面中子辐射水平的准确测量等。本文主要针对乏燃料运输容器屏蔽性能检测中涉及的中子辐射水平测量可靠性开展相关研究。通过分析比较不同类型测量仪器的测量结果,结合乏燃料运输容器外部辐射水平的模拟计算结果,提出优化乏燃料运输容器屏蔽性能检测技术的建议,为技术的完善和乏燃料运输管理工作提供借鉴。  相似文献   

11.
Abstract

An important problem of the handling of casks intended for spent nuclear fuel transport and storage is providing safety during all operations. In particular the safety requirements should be fulfilled during the cask cooling that precedes the discharge of spent nuclear fuel from the cask. An analysis has been performed for the CASTOR RBMK cask heat removal system. This provides forced cooling of the cask with the spent fuel assemblies in it, by water delivery into the cask inner cavity. As a result of analyses performed for the different flow rates of the cooling water, the maximum pressure in the cask cavity caused by water evaporation has been estimated and compared with the maximum permissible value and the time taken by the cask in cooling to the given temperature limit has been determined. On the basis of the analysis results the most preferable regime for CASTOR RBMK cask cooling is suggested.  相似文献   

12.
Abstract

General Atomics has developed the model GA-4 legal weight truck spent fuel cask, a high-capacity cask for the transport of four pressurised water reactor (PWR) spent fuel assemblies, and obtained a certificate of compliance (CoC, No. 9226) in 1998 from the US Nuclear Regulatory Commission (NRC). The currently authorised contents for this CoC, however, are much more limiting than the actual capability of the GA-4 cask to transport spent PWR fuel assemblies. The purpose of this paper is to show how the authorised contents can be significantly expanded by additional analyses without any changes to the physical design of the package. Using burn-up credit as outlined in US NRC Interim Staff Guidance 8, Revision 2, the authorised contents can be significantly expanded by increasing the maximum enrichment as the burn-up increases. Use of burn-up credit eliminates most of the criticality imposed limits on authorised package contents, but shielding still limits the use of the cask for higher burn-up, short-cooled fuel. By reducing the number of assemblies transported (downloading) to two and using shielding inserts, even high-burn-up fuel with reasonable cooling times can be transported.  相似文献   

13.
Abstract

In 2001 the Swiss nuclear utilities started to store spent fuel in dry metallic dual purpose casks at ZWILAG, the Swiss interim storage facility. BKW FMB Energy Ltd, as the owner of the Mühleberg nuclear power plant, is involved in this process and has selected to store the spent fuel in a new high capacity dual purpose cask, the TN24BH. For the transport Cogema Logistics has developed a new medium size cask, the TN9/4, to replace the NTL9 cask, which has performed numerous shipments of BWR spent fuel in past decades. Licensed by the IAEA 1996, the TN9/4 is a 40 t transport cask, for seven BWR high burnup spent fuel assemblies. The spent fuel assemblies can be transferred to the ZWILAG hot cell in the TN24BH cask. These casks were first used in 2003. Ten TN9/4 shipments were made, and one TN24BH was loaded. After a brief presentation of the operational aspects, the paper will focus on the TN24BH high capacity dual purpose cask and the TN9/4 transport cask and describe in detail their characteristics and possibilities.  相似文献   

14.
The spent fuel storage and transport cask must withstand various accident conditions such as fire, free drop and puncture in accordance with the requirement of the IAEA and domestic regulations. The spent fuel storage and transport cask should maintain the structural safety not to release radioactive material in any condition. And also the effects of the irradiation should be considered because the spent fuels stored in the cask for a long time and be possible to change the mechanical properties of the cask.In this study, the changed mechanical properties of the cask after irradiation for the 30 years storage periods are assumed and applied to the impact analysis using ABAQUS/Explicit code and seismic analysis using ANSYS code. The stress intensity on each part of the cask is calculated and the effects of irradiation are studied and structural integrity of the package is evaluated.  相似文献   

15.
Abstract

During the last year, Sogin (the Italian company in charge for decommissioning of Italian nuclear power plants) had to implement an accelerated decommissioning plan of a EUREX spent fuel pool due to finding a water leakage into the environment from the pool. EUREX is no longer operating a pilot reprocessing plant, which some years ago became the responsibility of Sogin. There were 52 spent fuel assemblies from the Trino Vercellese PWR nuclear power plant, 48 irradiated pins from a Garigliano BWR fuel assembly, and 10 plates from an irradiated MTR fuel assembly stored in the EUREX pool, so the first step of the accelerated decommissioning plan consisted in the evacuation of this spent fuel. Considering the necessity to start the evacuation as soon as possible, Sogin decided to use an already existing cask (AGN-1) used in the past for the transport of Trino and Garigliano fuel assemblies. This cask was requalified in order to obtain a transport licence for the fuel assemblies stored in the EUREX pool according to ADR 2005 regulation. The transport license for the AGN-1 cask loaded with EUREX fuel assemblies was released by APAT (the Italian Safety Authority) in the spring of 2007. Owing to the limited capacity of the EUREX pool crane (27 t for nuclear loads) and limited dimensions of pool operational area, it was not possible to transfer the AGN-1 cask (50 t) into the pool for fuel assemblies charging. The solution implemented to overcome this problem was the loading of the cask outside the pool. A special shielding shuttle was developed and used to allow safe spent fuel transfer between the pool and the cask. This procedure avoided also the problem of excessive contamination of cask surfaces that could have occurred due to very high level of contamination of EUREX pool water if the cask had been immersed in the pool. Additional shielding devices were developed and used to reduce dose rate during cask loading operations. Although the evacuation of spent fuel assemblies from the EUREX pool was a very challenging activity due to the short time available, unfavourable space conditions inside the pool building and handling tool limitations; all loading and transport operations were performed successfully and without particular problems. Ten transports were carried out to evacuate all of the spent fuel stored in the EUREX pool. Spent fuel was transferred to the Avogadro Deposit pool. The first loading sequence started on 2 May 2007 and the first transport was performed on 6 May 2007. The tenth and last transport was performed on 21 July 2007. A dose less than 50 μSv (neutron + gamma) was measured for the most exposed operator during a complete cask loading sequence.  相似文献   

16.
Abstract

Continental railway transport regulations (RID) do not exclude the transport of spent fuel casks in a regular train unit that also contains wagons with other hazardous materials. In the case of a train accident the release or reactions of those dangerous goods could potentially give significant accidental impacts on to the spent fuel casks. The assessment of fires from inflammable liquids and the explosion impacts from pressurised inflammable gases (like LPG) is well known from other studies which have usually revealed sufficient safety margins to the robust spent fuel cask designs. A new problem to be assessed is the potential impact from a detonation blast wave from explosives transported in the same train unit as a spent fuel cask. BAM is assessing this problem by developing a numerical model to calculate the effect of the dynamic pressure of a external shockwave on the cask construction. The calculation results show that the integrity of a robust monolithic cask with a screwed lid closure system is preserved after the effect of a 21 tonne (equivalent weight of TNT) explosive detonation in the regular transport configuration with a distance of 25 m between the centre of the explosion and the front of the cask.  相似文献   

17.
Abstract

For 45 years TN International has been involved in the radioactive materials transportation field. Since the beginning the spent nuclear fuel transportation has been its core business. During all these years TN International, now part of AREVA, has been able to anticipate and fulfil the needs for new transport or storage casks design to fit the nuclear industry evolutions. A whole fleet of casks able to transport all the materials of the nuclear fuel cycle has been developed. This paper focuses on the casks used to transport the fresh and used mix oxide (MOX) fuel. To transport the fresh MOX boiling water reactor and pressurised water reactors fuel, TN International has developed two designs of casks: the MX 6 and the MX 8. These casks are and have been used to transport MOX fuel for French, German, Swiss and in a near future Japanese nuclear power plants. A complete set of baskets have been developed to optimise the loading in terms of integrated dose and also of course capacity. Mixed oxide used fuel has now its dedicated cask: the TN 112 which certificate of approval has been obtained in July 2008. This cask is able to transport 12 MOX spent fuel elements with a short cooling time. The first loading of the cask has been performed in September 2008 in the Electricité de France nuclear power plant of Saint-Laurent-des-Eaux. By its continuous involvement in the nuclear transportation field, TN International has been able to face the many challenges linked to the radioactive materials transportation especially talking of MOX fuel. TN International will also have to face the increasing demand linked to the nuclear renaissance.  相似文献   

18.
The casks used for transport of nuclear materials, especially the spent fuel element (SPE), must be designed according to rigorous acceptance criteria and standards requirements, e.g. the International Atomic Energy Agency ones, in order to provide protection to people and environment against radiation exposure particularly in a severe accident scenario.The aim of this work was the evaluation of the integrity of a spent fuel cask under both normal and accident scenarios transport conditions, such as impact and rigorous fire events, in according to the IAEA accident test requirements. The thermal behaviour and the temperatures distribution of a Light Water Reactor (LWR) spent fuel transport cask are presented in this paper, especially with reference to the Italian cask designed by AGN, which was characterized by a cylindrical body, with water or air inside the internal cavity, and two lateral shock absorbers.Using the finite element code ANSYS a series of thermal analyses (steady-state and transient thermal analyses) were carried out in order to obtain the maximum fuel temperature and the temperatures field in the body of the cask, both in normal and in accidents scenario, considering all the heat transfer modes between the cask and the external environment (fire in the test or air in the normal conditions) as well as inside the cask itself.In order to follow the standards requirements, the thermal analyses in accidents scenarios were also performed adopting a deformed shape of the shock absorbers to simulate the mechanical effects of a previous IAEA 9 m drop test event. Impact tests on scale models of the shock absorbers have already been conducted in the past at the Department of Mechanical, Nuclear and Production Engineering, University of Pisa, in the ‘80s. The obtained results, used for possible new licensing approval purposes by the Italian competent Authority of the cask for PWR spent fuel cask transport by the Italian competent Authority, are discussed.  相似文献   

19.
20.
When storage of spent nuclear fuel or high level waste is carried out in dual purpose casks (DPC), the effects of aging on safety relevant DPC functions and properties have to be managed in a way that a safe transport after the storage period of several decades is capable and can be justified and certified permanently throughout that period. The effects of aging mechanisms (e.g. radiation, different corrosion mechanisms, stress relaxation, creep, structural changes and degradation) on the transport package design safety assessment features have to be evaluated. Consideration of these issues in the DPC transport safety case will be addressed. Special attention is given to all cask components that cannot be directly inspected or changed without opening the cask cavity, like the inner parts of the closure system and the cask internals, like baskets or spent fuel assemblies. The design criteria of that transport safety case have to consider the operational impacts during storage. Aging is not the subject of technical aspects only but also of ‘intellectual’ aspects, like changing standards, scientific/technical knowledge development and personal as well as institutional alterations. Those aspects are to be considered in the management system of license holders and in appropriate design approval update processes. The paper addresses issues that are subject of an actual International Atomic Energy Agency TECDOC draft ‘Preparation of a safety case for a dual purpose cask containing spent nuclear fuel’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号