首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
李猛  梁辉  王述彬 《河南化工》2007,24(2):15-16
介绍了联合生物加工(CBP)技术,并阐述通过该技术对发酵纤维素生产燃料乙醇的工艺进行技术改造,为利用纤维素低成本生产燃料乙醇提供了有效途径.  相似文献   

2.
董平 《现代化工》2011,(Z2):40-44
以纤维素为原料生产燃料乙醇,由于其原料来源广泛及环保效益良好而被认为是最有前景的生产燃料乙醇的方法之一。在阐述我国发展纤维素乙醇必要性的基础上,综述了纤维素乙醇的浓酸水解、稀酸水解、酶水解及生物质合成气等发酵工艺及研究进展。分析了各工艺优缺点,并讨论了各工艺过程需要解决的关键技术问题,展望了纤维素乙醇的产业化前景。  相似文献   

3.
李煜  李慧 《广东化工》2013,(8):51-52
纤维素燃料乙醇是当今世界可再生生物质能源研究的热点。文章综述了纤维素燃料乙醇生产技术以及纤维素燃料乙醇产业的发展概况。分析了纤维素燃料乙醇产业化过程中出现的关键技术问题,并提出了相应建议。  相似文献   

4.
龚德词 《当代化工》2009,38(2):178-181
叙述了生物乙醇的生产原理和工艺技术,对生物乙醇发展趋势进行了分析探讨,并对我国发展生物乙醇提出了合理化建议。  相似文献   

5.
木质纤维素类生物质制备生物乙醇研究进展   总被引:3,自引:0,他引:3  
以木质纤维素类生物质为原料制备第二代生物乙醇的研究取得了较大进展,重点阐述了生物乙醇制备过程中的关键问题,包括原料预处理、水解和发酵工艺、各种方法的优缺点比较等,并介绍了我国生物乙醇的发展现状。  相似文献   

6.
廖礼斌 《广州化工》2009,37(3):66-68
随着生物技术越来越多的介入到燃料乙醇的生产中,联合生物工艺(consolidated biopricessing)—CBP,因其可将纤维酶生产、纤维素水解和酒精发酵融合于一步工艺中完成,更是成为其中的亮点。为使联合生物工艺成为可能,以两种途径对所需微生物进行改造:一种是天然纤维降解微生物改造途径,将天然存在的可降解纤维素的微生物,尤其是厌氧微生物进行改造,以使其适应CBP生产的要求;另一种是重组途径,通过基因重组的方式将不能降解纤维的微生物获得降解纤维素的能力,并且生产的产品性质符合CBP的要求。两种途径的对微生物的改造,无论从经济性和社会效益,都将为高能耗时代的今天,提供一种低成本的燃料乙醇生产方式。  相似文献   

7.
纤维素乙醇的研究进展   总被引:9,自引:0,他引:9  
近年来以纤维素类生物质为原料制备乙醇的研究取得了许多进展,使纤维素乙醇的开发更具商业化前景.重点介绍了木质纤维素转化为乙醇的原料预处理方法、纤维素和半纤维素的酶法降解、有效可靠的发酵菌种的选育及木质纤维素乙醇制备工艺的开发.  相似文献   

8.
林业生物质中所储存生物质能的利用与转化对于解决世界性的环境污染和能源危机等问题具有十分重要的意义.针对木质纤维素的特性,分析了国内外纤维素乙醇的研究现状及发展前景,指出纤维素乙醇工业目前存在的主要问题.虽然由于受工艺和纤维素自身特点的限制,纤维紊乙醇还没能真正工业化生产,但生物燃料无异是解决未来能源危机的答案之一.  相似文献   

9.
纤维素乙醇研究开发进展   总被引:3,自引:0,他引:3  
胡徐腾 《化工进展》2011,30(1):137-143
纤维素乙醇是当今的研究热点,具有广阔的发展前景,将成为未来最重要的可再生能源之一。本文介绍了纤维素乙醇的研发概况,综述了国内外研究开发历程与最新进展,分析了目前纤维素乙醇燃料产业化存在的困难和问题,指出了当前和今后的研发方向。  相似文献   

10.
燃料乙醇,特别是纤维素乙醇可以有效地减少二氧化碳和污染物的排放,具有很好的发展前景。介绍了纤维素乙醇的发展现状,纤维素乙醇的生产工艺以及生产过程中的搅拌设备的配置情况。总结了未来要实现我国纤维素乙醇的大规模的商业化生产仍然需要努力的方向,并对其未来发展进行了展望。  相似文献   

11.
李心利  朱玉红  汪保卫  付晶  王智文  陈涛 《化工进展》2016,35(11):3600-3610
一体化生物加工过程(consolidated bioprocessing,CBP)指通过对理想底盘微生物的开发和利用来实现一步转化木质纤维素为生物产品的生物加工程序。本文回顾了一体化生物加工过程的研究背景,简述了其开发理念和技术路线,全面综述了近年来该技术在转化木质纤维素生产二代生物乙醇研究中的不同策略及最新的研究进展。分析了CBP系统中自然菌株、重组菌株和共培养菌株在转化木质纤维素生产生物乙醇时的优点和瓶颈因素。研究了基因工程、代谢工程等工程手段和技术在克服此技术中的阻碍性因素及提升乙醇得率等方面的应用价值和潜力。最后,论述了组学及合成生物学等新兴生物技术对CBP生物乙醇的贡献和二代生物乙醇的商业化发展现状及CBP乙醇未来所面临的机遇与挑战。  相似文献   

12.
The consolidated bioprocessing (CBP) of lignocellulose by the synthetic microbial consortium of Trichoderma reesei and Saccharomyces cerevisiae is a promising way of biomanufacturing d -glucaric acid. However, the hindrance factor to its industrial application is the low efficiency. Therefore, we engineered T. reesei and S. cerevisiae to improve the CBP for d -glucaric acid production. T. reesei was engineered to produce more cellulase and release more fermentable sugars from lignocellulose, that is, pushing more sugars to S. cerevisiae. S. cerevisiae was engineered to metabolize cellobiose and siphon more sugars into d -glucaric acid biosynthetic pathway, that is, pulling more sugars to S. cerevisiae. This is the strategy of distributive and collaborative push-and-pull we developed and proposed in this work, which was proven successful in improving efficiencies of the CBPs of steam-exploded corn stover (SECS) for d -glucaric acid production and distiller's grains for single cell protein (SCP) production. The titer, yield and productivity of d -glucaric acid produced from 50 g/L SECS by the microbial consortium of T. reesei C10 and S. cerevisiae LGA-1C3S2 were 6.42 g/L, 0.128 g/g SECS, and 0.917 g/L/d, respectively. The titer, yield, and productivity of SCP produced from 80 g/L distiller's grains were 50.5 g/L, 0.631 g/g distiller's grains, and 8.417 g/L/d, respectively. These were much higher than the initial microbial consortia of T. reesei Rut-C30 and S. cerevisiae LGA-1 or INVSc1. The results confirmed the applicability and generalizability of distributive and collaborative push-and-pull, which has profound meaning for science and engineering.  相似文献   

13.
潘奇  陈介南  张新民  詹鹏  张林 《化工进展》2015,34(1):86-90,159
近年来,将纤维素乙醇生产过程中所产生的废物进行资源化利用已越来越受重视。本研究利用杨木纤维酶解发酵产纤维素乙醇的残渣进行木质素的提取与表征,采用单因素试验分析碱浓度、料液比、反应温度、反应时间对酶解木质素提取效果的影响,并对反应条件进行正交优化,应用UV、FT-IR光谱仪对分离出的酶解木质素结构进行表征。结果表明:酶解木质素最佳的提取工艺条件为NaOH浓度40g/L、料液比1:30、反应温度60℃、反应时间2.5h。紫外和红外光谱显示酶解木质素保留了完好的木质素结构,以紫丁香基木质素为主,有良好的化学活性。  相似文献   

14.
马国杰 《现代化工》2014,34(9):133-136
从纤维素生物质原料出发,可以经水解发酵路径、气化生物合成路径和气化化学催化路径3条不同的转化路径生产纤维乙醇。通过对比各工艺路径的技术特点,结合不同工艺的技术经济指标,分别对3条技术路径进行了分析比较。分析结果表明,水解发酵路径和气化化学催化路径与气化生物合成途径相比具有一定的优势,并且随着技术的发展,气化化学催化路径将会展现出较强的竞争力。  相似文献   

15.
李煦颖  张鑫蕊  马秋娟  张秀丽 《化工进展》2013,32(10):2529-2534
燃料乙醇作为一种新的可再生能源,能够降低对不可再生能源——石油的依赖。在我国,多个部门均发布了燃料乙醇相关的产业政策,为燃料乙醇领域的技术发展铺平了道路。本文梳理了燃料乙醇领域的各国国家政策、技术发展现状及专利状况分析,详细分析了燃料乙醇领域中生产原料的专利状况。为燃料乙醇领域的技术企业提供专利数据支持,并对燃料乙醇领域的技术发展提供建议和展望。  相似文献   

16.
伴随着能源危机和环境污染的日益加剧,对于可再生能源的需求日益凸显。燃料乙醇作为一种可再生能源,在国家政策的扶持和倾斜下逐步发展起来。我国燃料乙醇企业面临着培养核心竞争力、突破技术瓶颈,抢占研发市场的艰巨任务。本文梳理了我国燃料乙醇领域的相关政策,并对相关企业的专利信息进行数据提取和分析,为我国燃料乙醇领域的政策制定和企业发展提供研究数据。  相似文献   

17.
高底物浓度纤维乙醇同步糖化发酵工艺的比较   总被引:1,自引:0,他引:1  
常春  王铎  王林风  马晓建 《化工学报》2012,63(3):935-940
引言日益加剧的能源危机和环境污染,正迫使人们寻求新的可再生替代能源。纤维乙醇作为一种重要的生物质替代能源,经过近40多年的发展,已经具备了实现工业化生产的潜力。为了进一步降低纤  相似文献   

18.
唐瑞琪  熊亮  程诚  赵心清  白凤武 《化工进展》2018,37(8):3119-3128
寻找化石能源的替代品以及开发和利用生物能源已引起国内外研究者的广泛关注。提高酿酒酵母利用来源广泛、贮存丰富的农林废弃物等木质纤维素原料生产燃料乙醇的效率是生物能源的重要研究内容,但是,重组酿酒酵母木糖发酵性能低是限制纤维素乙醇经济性的关键问题。本文总结了酿酒酵母中木糖代谢途径的构建和优化以及木糖转运对木糖利用的影响,分析了重组酵母利用纤维素水解液进行乙醇发酵的研究现状,并对进一步提高重组酿酒酵母纤维素乙醇生产效率的研究趋势进行了展望。目前国内外已经构建了可有效利用木糖产乙醇的重组酵母,但对其木糖代谢机制的研究还尚未深入,限制了重组菌株的定向改造。此外,目前缺少在纤维素生物质水解液发酵实际应用过程中对重组菌株的评价。因此,加强重组酵母菌株对木糖利用相关代谢调控机理的分析,注重多种抑制物对菌株发酵性能的影响,结合真实底物纤维素乙醇发酵过程进行重组菌株的构建和优化,从而进一步提高纤维素乙醇生产的经济性,是未来菌株构建的重要研究方向。  相似文献   

19.
燃料乙醇发展现状及思考   总被引:4,自引:0,他引:4  
自20世纪70年代以来,生物燃料乙醇作为车用燃料的研究和产业化受到广泛重视,被认为是未来最重要的可再生燃料之一。本文介绍了燃料乙醇的发展概况,综述了近年来国内外研究开发历程、产业政策和最新进展,对化学合成乙醇路线(合成气催化制乙醇、乙酸加氢制乙醇工艺)和生物发酵制乙醇路线(粮食发酵、非粮原料发酵、合成气发酵工艺)的技术特点、纤维素燃料乙醇产业化存在的困难和问题进行了分析,并对影响燃料乙醇产业发展的因素进行了分析,提出了我国燃料乙醇技术研发和产业发展的相关建议,认为我国应加强非粮原料供应体系建设,积极进行技术研发,加强工业示范并优化燃料乙醇使用环节,促进非粮燃料乙醇产业发展。  相似文献   

20.
采用合成气生物发酵法制乙醇具有反应条件温和、产物选择性高、原料来源广泛、低碳可持续发展等优势,是一种具有前景的可再生能源新型生产工艺。文章综述了合成气发酵法制乙醇的微生物种类及对应的适宜操作条件,分析了合成气发酵法制乙醇的Wood-Ljungdahl代谢途径;总结了合成气的广泛来源;分析讨论了过程工艺参数如合成气组成及压力、pH、温度、培养基组分、气液传质对合成气发酵的影响;指出合成气发酵法制乙醇面临的底物传质性能差、乙醇收率低等关键问题,比较了典型反应器在传质方面的差异,归纳了传质强化方法;总结了合成气发酵法制乙醇的工业化进展, 并提出了未来的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号