首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于改进模糊均值聚类算法的遥感图像聚类   总被引:1,自引:0,他引:1  
由于传统模糊C均值聚类算法存在缺陷,该文给出了一种结合加权模糊C均值聚类与聚类有效性指数的算法.利用数据点的密度大小作为权值,借助数据本身的分布特性,该方法不仅在一定程度上克服了模糊均值算法的缺陷——有对数据集进行等划分的趋势,而且具有良好的收敛性.  相似文献   

2.
为了解决高光谱数据有标签样本数量有限的分类问题,提出将M-training算法应用于高光谱图像分类。采用两个SVM、一个K近邻(KNN)以及一个随机森林(RF)进行分类器组合,对传统M-training算法进行改进,增强分类器的多样性和差异性。为了充分考虑大量无标签样本的影响,采用有标签样本与无标签样本错误率加权作为有标签样本集更新的限制条件,从而有效地扩大了有标签样本集。实验结果表明:改进算法和传统的M-training算法相比较,在总体分类精度与Kappa系数上分别提高1. 85%~12. 10%与0. 021 5~0. 141 3,从而验证了该算法的有效性。  相似文献   

3.
针对遥感图像分割迅速性和准确性不高的问题,提出了一种基于改进模糊均值聚类算法的遥感图像分割技术并将其应用于电力规划建设领域。以模糊均值聚类算法为基础,采用样本特征值平方差方式定义了新的特征距离,并通过引入空间函数方式实现了对图像空间信息的利用,从而对模糊均值聚类算法进行改进。结果表明:改进FCM算法单张图像处理时间约为FCM-S图像处理算法的0.43倍,约为FCM图像处理算法的0.19倍;改进FCM算法图像分割准确率约为95.3%,比FCM-S算法高约2.7%,比传统FCM算法高约7.1%。  相似文献   

4.
为提升聚类算法的聚类效果,采用仿生优化算法与k均值聚类算法相结合(BFOA-K)实现数据聚类。在聚类过程中,为解决k均值对于初始质心敏感以及容易陷入局部最优的问题,使用果蝇优化算法确定k均值聚类算法的质心,再使用k均值聚类算法进行数据聚类。针对果蝇优化算法对于飞行步长的影响,采用F分布动态改变步长,提升算法全局搜索能力。同时采用精英保留策略,提升果蝇种群的多样性,扩大了搜索范围和提升了搜索效率。利用4个UCI标准数据集对算法进行仿真实验,结果表明,本文提出的BFOA-K算法在各项聚类评估指标中都优于其余对比算法,提升了算法的收敛性,证明了算法的有效性和可行性。  相似文献   

5.
针对传统异常检测算法需要建立在一定的假设模型下,提出了一种新的高光谱图像异常检测算法。该算法无需假设背景模型,首先运用迭代误差分析方法对高光谱图像数据进行处理,得到高光谱图像数据的异常端元。然后以选取出的端元为参考,对高光谱数据进行相似度量,通过计算与参考端元的核光谱角余弦,找到与异常端元相似的光谱向量,得到异常检测结果。仿真实验结果表明,该算法能够准确的检测出异常目标,并且具有运算时间短、效率高的特点。  相似文献   

6.
为了提高强噪声污染图像分割的鲁棒性,给出一种改进的非局部模糊聚类图像分割算法。改进算法将模糊因子的局部邻域值替换为非局部均值滤波图像的像素值,并加入局部空间信息,产生新的目标函数。借助拉格朗日乘子法,从最小化目标函数得出隶属度和聚类中心的迭代公式,进而完成图像分割。对合成图像、医学图像和自然图像添加高斯噪声、莱斯噪声和椒盐噪声,用于分割测试,结果显示,改进算法对强噪声图像具有更高的正确分割率和较小的模糊性。  相似文献   

7.
为解决模糊C均值聚类算法在进行医学超声图像分割时聚类数目及初始聚类中心选取的问题,提出一种改进的模糊C均值聚类医学超声图像分割算法。算法根据医学超声图像的特点,首先将医学超声图像变换到灰度特征空间,然后根据医学超声图像的直方图特征峰值数目设置聚类数目,并将特征峰值设为聚类中心。最后,在灰度特征空间对医学超声图像进行病灶区域分割。仿真实验结果表明,算法能够准确、快速地分割出医学超声图像中的病灶区域。  相似文献   

8.
《南昌水专学报》2015,(6):23-29
针对高光谱图像中端元提取的问题,提出了一种基于改进人工蜂群算法的提取方法。首先,为平衡人工蜂群算法全局和局部搜索能力,研究了加权构造蜂引导的搜索策略,构造了改进人工蜂群算法。在8个基准测试函数中进行实验,验证了新算法的性能有明显提升。然后,介绍了基于IABC端元提取的核心思想与主要步骤,与ABC和常规提取算法在模拟和真实高光谱遥感数据中进行实验对比,结果表明了新算法具有更好的适用性。  相似文献   

9.
模糊C均值(Fuzzy C-Means,FCM)聚类算法已广泛应用于图像分割领域,其本质是一种局部搜索算法,采用迭代爬山算法寻找最优解,对初始聚类中心敏感,很容易陷入局部极优值,且没有考虑图像的空间邻域信息,对噪声敏感。本文提出了改进的基于遗传模糊聚类的图像分割算法,利用遗传算法的全局寻优能力来克服FCM算法容易陷入局部极优值问题;并在FCM算法的目标函数中添加空间邻域信息来约束隶属度函数从而提高对噪声的鲁棒性,使分割更加符合期望。实验结果表明本文算法的有效性,图像分割时具有较强的抗噪能力和较好的分割效果。  相似文献   

10.
高光谱数据维数高,有标签的样本数量少,给高光谱图像分类带来困难。本文针对传统三重训练(tri-training)算法在初始有标签样本数量较少的情况下分类器间差异性不足的问题提出了一种基于改进三重训练算法的半监督分类框架。该方法首先通过边缘采样策略(margin Sampling,MS)选取最富含信息量的无标签样本,然后在训练每个分类器之前通过差分进化算法(differential evolution,DE)利用所选取的无标签样本产生新的样本。这些新产生的样本将被标记并且加入训练样本集来帮助初始化分类器。实验结果表明,该方法不仅能够有效地利用无标签样本,而且在有标签数据很少的情况下能够有效地提高分类精度。  相似文献   

11.
高光谱图像(HSI)分类是HSI处理中的重要预处理手段,其目标是对HSI数据中每个像素点进行类别标记,标记结果常用于识别、勘探等应用。针对HSI分类任务中存在的数据量大、数据维度高、已知样本量少等难点,提出一种基于图模型的半监督分类算法。该算法将HSI数据建立为图以实现降维,而后将分类问题归结为一个无约束的优化问题。由于在求解优化问题时涉及到矩阵求逆,数据规模大时计算复杂度会变高。为了避免大规模的矩阵求逆,采用拟牛顿法进行求解,通过对Hessian矩阵进行分解,对计算步长时涉及到的求逆操作进行近似,且该算法能够分布式实现。仿真实验表明,与现有算法相比,本算法在大规模且类别多的HSI分类任务下计算复杂度较低,能完成较高精度的分类。  相似文献   

12.
聚类分析是遥感图像非监督分类的有效方法,蚁群算法具有离散性和并行性的特点,蚂蚁觅食行为、蚂蚁堆积尸体行为和基于蚂蚁自我聚集行为的聚类算法是目前研究较为广泛的3种基于蚂蚁的仿生聚类算法.为验证上述3种算法的有效性,在对这3种聚类算法进行研究的基础上,针对遥感图像进行了聚类实验.实验结果表明,基于蚂蚁的聚类方法对图像的聚类分析是有效的,较传统的k均值和模糊C均值算法有一定优越性.  相似文献   

13.
传统的k-means聚类算法常陷入局部最优,需要事先输入聚类数,这样会造成原有算法失效或聚类结果不准确.在研究现有聚类算法的基础上,使用ε-最近邻法剔除孤立点,提出一种改进的基于模拟退火算法的、具有自适应功能的k-means聚类算法.实验结果证明,提出的算法是可行的、有效的.  相似文献   

14.
传统的k-means聚类算法常陷入局部最优,需要事先输入聚类数,这样会造成原有算法失效或聚类结果不准确。在研究现有聚类算法的基础上,使用ε-最近邻法剔除孤立点,提出一种改进的基于模拟退火算法的、具有自适应功能的k-means聚类算法。实验结果证明,提出的算法是可行的、有效的。  相似文献   

15.
传统的k-means算法是一种局部搜索算法,对初始化敏感,容易陷入局部极值。针对此缺点,提出一种基于k-means算法的改进的蚁群聚类算法,选择相距最远的处于高密度区域的k个数据对象作为初始聚类中心,把正反馈、精英机制和变异算子引入到蚁群聚类。实验结果证明,算法不仅对初始数据具有弱依赖性,而且能够提高聚类的准确率,加快收敛。  相似文献   

16.
模糊支持向量机是模糊技术与支持向量机的有机结合,其关键步骤是确定模糊隶属度函数.现有方法大多利用距离这一相似性测度从不同角度构造隶属度函数,实现过程比较复杂.对于高光谱数据的光谱特性,用距离表征地物的光谱亮度差异较为合适,但天气、光照强度等因素对这种亮度影响很大.相比之下光谱间的角度受亮度的影响很小,作为相似性测度更为可靠.针对这种地物光谱角度特性,在模糊最小二乘支持向量机(FLS-SVM)中,用核光谱角余弦作为相似性测度来构造模糊隶属度函数,仿真结果表明能够有效地提高最小二乘支持向量机(LS-SVM)高光谱图像分类性能.  相似文献   

17.
为了增强高光谱图像的空间分辨率,该文提出一种基于传统Pan-sharpening技术的高光谱和多光谱融合框架,该融合框架将高光谱和多光谱(HS-MS)图像融合问题简化为若干个多波段和单波段(MB-IB)图像融合问题。在此基础上,对于每个多波段和单波段图像融合的问题提出一种基于局部自适应(LA)字典和协同表示(CR)的图像融合(LACRF)算法,得到高空间分辨率的多波段(HRMB)图像,并最终获到了高空间分辨率的高光谱图像(HHS)。通过实验可知,LACRF算法具有良好的融合效果。  相似文献   

18.
基于人工蜂群算法高光谱图像波段选择   总被引:1,自引:0,他引:1  
为减少高光谱遥感图像光谱空间冗余、降低计算复杂度,提出一种基于人工蜂群算法的高光谱图像波段选择方法.首先,根据波段相关性矩阵对全波段进行预处理,获得相关性较小的波段子空间;然后,利用人工蜂群算法以最佳指数与JM距离的加权和为适应度函数在各子空间进行邻域搜索,不断更新至收敛为止,从而获得最优波段组合.最后,利用AVIRIS数据和ROSIS数据对提出的算法与基于蚁群,粒子群,拟态物理学算法的波段选择方法进行实验.仿真结果表明:基于人工蜂群算法的波段选择能够在保证良好收敛性的同时,大大降低计算花费,所获得的波段组合用于高光谱图像分类时,可以得到较好的分类精度.  相似文献   

19.
模糊C均值(FCM)算法广泛地应用于模式识别、图像分割等领域。根据FCM算法存在对初始解敏感且迭代过程中计算量大的问题,本文提出了一种改进的算法:先通过精简数据集,减少算法迭代的时间;再使用密度函数法得到FCM算法的初始聚类中心,以减少FCM算法收敛所需的迭代次数。实验结果表明,改进后的算法较好地解决了类中心的初值化问题,提高了算法的收敛速度和运行效率。  相似文献   

20.
基于信息熵的蚁群聚类算法的改进   总被引:8,自引:0,他引:8  
聚类分析是数据挖掘领域中的一个重要研究课题.在LF算法的基础上,利用信息熵减少参数设置,并通过半径递增、短期记忆、强行放下、合并聚类等策略,提高聚类性能、仿真实验表明:新算法能取得较好的聚类结果,对于处理混合属性数据集尤其是类属性数据集聚类问题相当有效.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号