共查询到18条相似文献,搜索用时 78 毫秒
1.
针对CO2水合物自然生成速度慢这一技术难题,利用实验室自制的水合物实验系统,开展了十六烷基三甲基溴化铵(CTAB)体系下CO2水合物生成促进实验研究。考察了CTAB质量分数为200、300、500、700、900 mg/kg下对水合反应体系表面张力及CO2水合物生成特性影响规律,分析了CTAB对CO2水合物生成促进作用机理。实验结果表明,5种浓度下CTAB添加剂均能够有效降低CO2水合物相平衡点,温度越高,生成压力降低幅度越大,在最优用量为300 mg/kg下降幅可达27.7%。水合反应体系的压力越低,CTAB促进CO2水合物生成的诱导时间降低越大,促进效果越明显。该研究对于提高水合物生成速率具有一定的意义。 相似文献
2.
在自行设计的反应装置中考察了2.8 MPa和3.25 MPa压力下,温度271.2、273.2和276.0 K时CO2气体置换十二烷基硫酸钠(SDS)体系CH4水合物中CH4的置换过程。实验数据表明,在反应的前50 h,CH4水合物的分解速率较快,其后分解速率变慢。冰点以上CH4水合物的分解速率较快。基于动力学数据,建立了SDS体系置换反应过程中CH4水合物的分解动力学模型和CO2水合物的生成动力学模型。计算得到CH4-CO2置换反应过程中CH4水合物的分解活化能为28.81 kJ·mol-1,CO2水合物的生成活化能为68.40 kJ·mol-1。数据表明,CH4水合物的分解可能受置换反应过程中水分子的重排控制,而CO2水合物的生成可能受CO2气体在水合物中的扩散控制。 相似文献
3.
甲烷水合物在纯水中的生成动力学 总被引:2,自引:0,他引:2
The kinetic behavior of methane hydrate formation in pure water was investigated.12 sets of experimental data on methane hydrate formation were determined at temperatures ranging from 273.65 to 276.15K and pressures ranging from 4.47 to 8.47MPa.The duration of three stages in methane hydrate formation,known as the dissolution,nucleation and growth periods,that are lacking in open literature,was obtained.The effect of pressure and temperature on the kinetics of methane hydrate formation was also studied. 相似文献
4.
为明确CO2水合物在管道中的流动及堵塞特性,通过高压可视水合物环路研究了不同持液量下的水合物生成及堵塞特性,研究结果表明:水合物生成诱导时间随着持液量的增大出现非线性变化,呈V形,先减小后增大;管道持液量越大,水合物生成量越少,水合物发生堵塞时的临界体积分数降低,如在持液率86.6%下,堵塞时水合物体积分数为4.32%,持液率为66.7%时,堵塞时水合物体积分数为7.45%。通过可视管路发现当CO2水合物大量生成后,管道中压降将突然增大,颗粒之间快速聚集生长,流速迅速降低,CO2水合物快速充满管道使管道发生堵塞,水合物颗粒不断生长及在聚集层处的聚集导致流动阻力的增加是其产生堵塞的根本原因。研究结果可为CO2水合物浆液流动保障提供技术支撑。 相似文献
5.
CO2-N2-TBAB和CO2-N2-THF体系的水合物平衡生成条件 总被引:3,自引:0,他引:3
利用等温压力搜索法测定了CO2-N2-TBAB与CO2-N2-THF体系的水合物平衡生成压力. 实验的压力范围为0.69~14.55 MPa,温度范围为275.75~288.15 K. 结果表明,TBAB与THF均可作为添加剂有效降低气体水合物的平衡生成压力. 在较低的药剂浓度下,CO2-N2-TBAB的水合物平衡生成压力低于CO2-N2-THF体系. 在较高的浓度下,两种体系的水合物平衡生成压力没有明显差别. 相似文献
6.
7.
提高水合物生成速率和储气密度对天然气水合物技术应用非常重要。将三种孔密度的泡沫铜(CF)分别浸入十二烷基硫酸钠(SDS)溶液中构建水合储气强化体系,在高压静态反应釜中研究泡沫金属对甲烷水合物生成动力学特性。实验结果表明,泡沫铜骨架能为水合物生成提供充足的结晶点,同时可作为水合物生长过程水合热迁移的“高速公路”。甲烷水合物在SDS/CF体系中可快速生成,最大水合储气速率分布在19.24~21.04 mmol·mol-1·min-1之间,其中添加15 PPI泡沫铜的SDS溶液储气量最高(139 mmol·mol-1),且达到最大储气量90%所用时间最短(10.1 min)。在6.0~8.0 MPa压力下,相比SDS溶液,添加15 PPI泡沫铜的SDS溶液储气量提高了8.8%~35.6%,储气速率提高了4.7%~40.4%;特别在压力为5.0 MPa时,该孔密度SDS/CF体系储气量甚至比SDS溶液增加13倍,储气速率增加16倍。 相似文献
8.
从微观动力学和宏观动力学的角度对水合物生成和分解动力学研究文献进行了分类、评述,着重点是水合物生成的微观机理和水合物晶体生长的宏观动力学.关于水合物生成的微观动力学,着重介绍3个比较完整的水合物生成机理以及相应的机理模型.关于水合物生成的宏观动力学,着重阐述加拿大Bishnoi实验室所取得的研究成果以及日本学者结合CO_2水合物处置法开展的CO_2水合物生成动力学研究工作.关于水合物分解,主要讨论水合物在受热、降压和抑制剂存在时的分解动力学.基于水合物生成和分解动力学的研究现状,指出了今后研究的8个重要方向. 相似文献
9.
青藏高原冻土区储存着大量的天然气水合物资源,CO2置换开采冻土区的天然气水合物可实现天然气水合物的安全开采和温室气体CO2的地层封存。冰点以下多孔介质中气体水合物的生成动力学,是冻土区天然气水合物置换开采研究领域的难点和热点问题。本文全面综述了冰点以下多孔介质中气体水合物的生成动力学研究进展,讨论了不同体系冰点以下多孔介质中气体水合物的形成机理及其生成特性;详述了冰生成水合物机理及其冰粉/多孔介质体系中气体水合物的生成特性,分析了冰点以下多孔介质中气体水合物生成动力学研究尚待完善和改进的地方。最后本文指出冰点以下多孔介质中水合物的生成过程是由传热、传质等多种因素所控制,揭示不同过程的主导因素及其影响规律是今后研究的重点方向。目前对冰点以下多孔介质中水合物的生成特性及机理的认识尚未成熟,仍需深入研究。 相似文献
10.
水合物的动力学研究一般分为分解动力学和生成动力学,其动力学模型可以划分为宏观模型和微观模型。本文对水合物分解、生成的主流动力学模型进行介绍,包括Jamaluddin模型、Goel模型、Komai模型、Englezos模型、Bergeron—Servio模型。最后,提出建立一个分解和生成双过程统一的动力学模型设想。 相似文献
11.
To investigate the effect of the particle size of porous media on CO2 hydrate formation, the formation experiments of CO2 hydrate in porous media with three particle sizes were performed. Three kinds of porous media with mean particle diameters of 2.30 μm (clay level), 5.54 μm (silty sand level), and 229.90 μm (fine sand level) were used in the experiments. In the experiments, the formation temperature range was 277.15–281.15 K and the initial formation pressure range was 3.4–4.8 MPa. The final gas consumption increases with the increase in the initial pressure and the decrease in the formation temperature. The hydrate formation at the initial formation pressure of 4.8 MPa in 229.90 μm porous media is much slower than that at the lower formation pressure and displays multistage. In the experiments with different formation temperatures, the gas consumption rate at the temperature of 279.15 K is the lowest. In 2.30 and 5.54 μm porous media, the hydrate formation rates are similar and faster than those in 229.90 μm porous media. The particle size of the porous media does not affect the final gas consumption. The gas consumption rate per mol of water and the final water conversion increase with the decrease in the water content. The induction time in 5.54 μm porous media is longer than that in 2.30 and 229.90 μm porous media, and the presence of NaCl significantly increases the induction time and decreases the final conversion of water to hydrate. 相似文献
12.
Hideo Tajima Ryuichi Nagaosa Akihiro Yamasaki Fumio Kiyono 《American Institute of Chemical Engineers》2010,56(10):2706-2716
The formation process of CO2 drops in various types of Kenics Static Mixers was analyzed from the perspective of energy dissipation in the mixer, focusing on the formation of drop surfaces. Experimental studies on CO2 drop formation were conducted under varying temperatures, pressure, and flow rates, with and without hydrate formation. Analysis of the CO2 drop size and distribution at several locations within the static mixer was conducted, as of pressure drop in the mixer, to determine dissipation energies. In all the experimental conditions, by considering the surface energy for hydrate formation, the energy required for the formation of CO2 drops correlated well with total energy dissipation by mixer flow, which is represented by a pressure drop along the mixer. This process has important applications to the formation of liquid CO2 for ocean disposal as a countermeasure to global warming. © 2010 American Institute of Chemical Engineers AIChE J, 2010 相似文献
13.
海底沉积物层内CO2封存被认为是缓解全球气候变暖的有效途径,本文介绍了CO2封存时水合物自封机理、水合物形成条件和水合物稳定带范围,描述了水合物生成动力学研究现状,包括成核动力学、生长动力学以及水合物结晶过程驱动力,水合物的成核模型有成簇成核模型、成簇成核扩展模型、界面成核模型、Chen-Guo模型,水合物生长动力学模型有Englezos、Kvamme生长模型、指数增长模型、流体流动模型以及LB模型,水合驱动力有化学势差、温差、吉布斯自由能差、浓度差、压差或逸度差。总结了多孔介质渗透率和孔隙度随水合物成核和生长的演化关系,有KC模型、NR模型、平行毛细管束模型、渗透率下降模型和Morisdis相对渗透率模型,最后介绍了CO2水合实验情况,展望了CO2海底沉积物层内封存与水合物相关的科学问题。 相似文献
14.
15.
Jia-nan Zheng Lei Yang Shihui Ma Yuechao Zhao Mingjun Yang 《American Institute of Chemical Engineers》2020,66(2):e16820
Gas hydrate is a nonstoichiometric crystal compound formed from water and gas. Most nonvisual studies on gas hydrate are unable to detect how much water is converted to hydrates, and thus, the hydrate stoichiometry calculations are inaccurate. This study investigated the CO2 hydrate formation process in porous media directly and quantitatively. The characteristics of the time-variable consumption of hydrate formation indicated a two-stage formation, hydrate enclathration and continuous occupancy. The enclathration stage occurred in the first 20 min of the formation when considerable heat is released. The continuous occupancy stage lasted longer than the hydrate enclathration because the empty cages in previously formed hydrates would also be occupied. The higher formation pressures can accelerate water consumption and increase cage occupancy. The compositions of completely formed CO2 hydrates at 2.7, 3.0, and 3.3 MPa and 275.15 K were determined as CO2·6.90H2O, CO2·6.70H2O, and CO2·6.49H2O, respectively. 相似文献
16.
试验研究了不同种类(Al2O3、Cu、SiO2)、不同质量分数(0.05%、0.1%、0.15%)及不同粒径(10、30、50 nm)的纳米粒子对CO2水合物热导率的影响。结果表明温度为-5~5℃时,纯CO2水合物热导率为0.553~0.5861 W·m-1·K-1,具有玻璃体的变化特性。分散剂SDBS的加入,可改善CO2水合物-纳米粒子体系的导热性能。在相同的质量分数和粒径下,纳米Cu粒子对CO2水合物热导率的增强作用最好,但综合考虑水合物生成特性和溶液悬浮稳定性,选用纳米Al2O3粒子较合适。Al2O3粒子粒径越小,水合物热导率越大,15 nm比50 nm纳米粒子体系中CO2水合物热导率的增长率平均提高了12.7%。此外,CO2水合物热导率随Al2O3粒子质量分数的增大而增大,质量分数由0.05%增加到0.15%时,水合物热导率的增长率由4.2%提高到8.2%。 相似文献
17.
18.
To obtain the fundamental data of CO2/N2 gas mixture hydrate formation kinetics and CO2 separation and sequestration mechanisms, the gas hydrate formation process by a binary CO2/N2 gas mixture (50:50) in fine sediments (150-250 μm) was investigated in a semibatch vessel at variable temperatures(273, 275, and 277 K)and pressures (5.8-7.8 MPa). During the gas hydrate reaction process, the changes in the gaseous phase composition were determined by gas chromatography. The results indicate that the gas hydrate formation process of the binary CO2/N2 gas mixture in fine sediments can be reduced to two stages. Firstly, the dissolved gas containing a large amount of CO2 formed gas hydrates, and then gaseous N2 participated in the gas hydrate formation. In the second stage, all the dissolved gas was consumed. Thus, both gaseous CO2 and N2 diffused into sediment. The first stage in different experiments lasted for 5-15 h, and >60% of the gas was consumed in this period. The gas consumption rate was greater in the first stage than in the second stage. After the completion of gas hydrate formation, the CO2 content in the gas hydrate was more than that in the gas phase. This indicates that CO2 formed hydrate easily than N2 in the binary mixture. Higher operating pressures and lower temperatures increased the gas consumption rate of the binary gas mixture in gas hydrate formation. 相似文献